Skeletal and cardiac muscle protein turnover during short-term cold exposure and rewarming in young rats

1996 ◽  
Vol 270 (6) ◽  
pp. R1231-R1239 ◽  
Author(s):  
S. E. Samuels ◽  
J. R. Thompson ◽  
R. J. Christopherson

Young animals exposed to cold environmental temperatures typically have decreased skeletal muscle accretion but increased heart masses. To explore these phenomena, we measured protein synthesis and degradation in vivo in cardiac and skeletal muscle in weanling rats during short-term cold exposure and rewarming. Control rats were housed at 25 degrees C throughout the experiment. Ad libitum-fed and pair-fed (to the intake of controls) rats were housed at 5 degrees C (cold) for 5 days and then at 25 degrees C (rewarmed) for another 5 days. Cold exposure decreased rates of protein accretion and synthesis in skeletal muscle, whereas degradation did not differ. The effects of cold exposure on skeletal muscle were similar in both pair-fed and ad libitum-fed rats, except growth was lower in pair-fed rats. In cardiac muscle, cold exposure increased rates of protein synthesis and degradation and resulted in increased cardiac mass. Results in pair-fed animals generally fell between those of control and ad libitum-fed cold rats. During rewarming, growth rates were not higher in skeletal muscle in ad libitum-fed re-warmed rats, although protein turnover returned toward control values; in pair-fed rats, it remained lower. In heart, growth rates of ad libitum-fed and pair-fed rewarmed rats decreased due to lower protein synthesis rates. These alterations appear to be consistent with a strategy designed to improve survival in cold environments.

2020 ◽  
Vol 319 (2) ◽  
pp. C419-C431
Author(s):  
Douglas W. Van Pelt ◽  
Ivan J. Vechetti ◽  
Marcus M. Lawrence ◽  
Kathryn L. Van Pelt ◽  
Parth Patel ◽  
...  

Small noncoding microRNAs (miRNAs) are important regulators of skeletal muscle size, and circulating miRNAs within extracellular vesicles (EVs) may contribute to atrophy and its associated systemic effects. The purpose of this study was to understand how muscle atrophy and regrowth alter in vivo serum EV miRNA content. We also associated changes in serum EV miRNA with protein synthesis, protein degradation, and miRNA within muscle, kidney, and liver. We subjected adult (10 mo) F344/BN rats to three conditions: weight bearing (WB), hindlimb suspension (HS) for 7 days to induce muscle atrophy, and HS for 7 days followed by 7 days of reloading (HSR). Microarray analysis of EV miRNA content showed that the overall changes in serum EV miRNA were predicted to target major anabolic, catabolic, and mechanosensitive pathways. MiR-203a-3p was the only miRNA demonstrating substantial differences in HS EVs compared with WB. There was a limited association of EV miRNA content to the corresponding miRNA content within the muscle, kidney, or liver. Stepwise linear regression demonstrated that EV miR-203a-3p was correlated with muscle mass and muscle protein synthesis and degradation across all conditions. Finally, EV miR-203a-3p expression was significantly decreased in human subjects who underwent unilateral lower limb suspension (ULLS) to induce muscle atrophy. Altogether, we show that serum EV miR-203a-3p expression is related to skeletal muscle protein turnover and atrophy. We suggest that serum EV miR-203a-3p content may be a useful biomarker and future work should investigate whether serum EV miR-203a-3p content is mechanistically linked to protein synthesis and degradation.


2000 ◽  
Vol 278 (3) ◽  
pp. R705-R711 ◽  
Author(s):  
T. A. McAllister ◽  
J. R. Thompson ◽  
S. E. Samuels

The effect of long-term cold exposure on skeletal and cardiac muscle protein turnover was investigated in young growing animals. Two groups of 36 male 28-day-old rats were maintained at either 5°C (cold) or 25°C (control). Rates of protein synthesis and degradation were measured in vivo on days 5, 10, 15, and 20. Protein mass by day 20 was ∼28% lower in skeletal muscle (gastrocnemius and soleus) and ∼24% higher in heart in cold compared with control rats ( P < 0.05). In skeletal muscle, the fractional rates of protein synthesis ( k syn) and degradation ( k deg) were not significantly different between cold and control rats, although k syn was lower (approximately −26%) in cold rats on day 5; consequent to the lower protein mass, the absolute rates of protein synthesis (approximately −21%; P < 0.05) and degradation (approximately −13%; P < 0.1) were lower in cold compared with control rats. In heart, overall, k syn(approximately +12%; P < 0.1) and k deg(approximately +22%; P < 0.05) were higher in cold compared with control rats; consequently, the absolute rates of synthesis (approximately +44%) and degradation (approximately +54%) were higher in cold compared with control rats ( P < 0.05). Plasma triiodothyronine concentration was higher ( P < 0.05) in cold compared with control rats. These data indicate that long-term cold acclimation in skeletal muscle is associated with the establishment of a new homeostasis in protein turnover with decreased protein mass and normal fractional rates of protein turnover. In heart, unlike skeletal muscle, rates of protein turnover did not appear to immediately return to normal as increased rates of protein turnover were observed beyond day 5. These data also indicate that increased rates of protein turnover in skeletal muscle are unlikely to contribute to increased metabolic heat production during cold acclimation.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Aline Ricarda Dörrbaum ◽  
Beatriz Alvarez-Castelao ◽  
Belquis Nassim-Assir ◽  
Julian D Langer ◽  
Erin M Schuman

Protein turnover, the net result of protein synthesis and degradation, enables cells to remodel their proteomes in response to internal and external cues. Previously, we analyzed protein turnover rates in cultured brain cells under basal neuronal activity and found that protein turnover is influenced by subcellular localization, protein function, complex association, cell type of origin, and by the cellular environment (Dörrbaum et al., 2018). Here, we advanced our experimental approach to quantify changes in protein synthesis and degradation, as well as the resulting changes in protein turnover or abundance in rat primary hippocampal cultures during homeostatic scaling. Our data demonstrate that a large fraction of the neuronal proteome shows changes in protein synthesis and/or degradation during homeostatic up- and down-scaling. More than half of the quantified synaptic proteins were regulated, including pre- as well as postsynaptic proteins with diverse molecular functions.


1986 ◽  
Vol 240 (1) ◽  
pp. 269-272 ◽  
Author(s):  
R J Zeman ◽  
P L Bernstein ◽  
R Ludemann ◽  
J D Etlinger

Dantrolene, an agent that inhibits Ca2+ mobilization, improved protein balance in skeletal muscle, as thyroid status was increased, by altering rates of protein synthesis and degradation. Thyroxine (T4) caused increases in protein degradation that were blocked by leupeptin, a proteinase inhibitor previously shown to inhibit Ca2+-dependent non-lysosomal proteolysis in these muscles. In addition, T4 abolished sensitivity to the lysosomotropic agent methylamine and the autophagy inhibitor 3-methyladenine, suggesting that T4 inhibits autophagic/lysosomal proteolysis.


1998 ◽  
Vol 55 (6) ◽  
pp. 1534-1544 ◽  
Author(s):  
Scott D Reid ◽  
T K Linton ◽  
J J Dockray ◽  
D G McDonald ◽  
C M Wood

Protein synthesis, net accretion, and degradation in liver, gill, and white muscle and ribosomal translational efficiency and protein synthesis capacity in liver and gill were measured using a flooding dose of [3H]phenylalanine in juvenile rainbow trout (Oncorhynchus mykiss). The fish were chronically exposed (90 days) in hardwater to the presence or absence of sublethal ammonia (70 µmol total ammonia ·L-1) alone or in combination with a 2°C elevation in the normal temperature profile over the months of June-September 1993 (ambient temperature range 13-22°C). Chronic sublethal exposure to ammonia had little impact on gill protein synthesis and degradation (protein turnover) and even less in muscle. However, in the liver, both protein synthesis and degradation were stimulated following 60 days of the sublethal ammonia exposure. The 2°C elevation in temperature resulted in a slight increase in protein turnover in both gills and liver. However, during the period of peak water temperature, the 2°C elevation in temperature inhibited protein dynamics in these tissues. Overall, elevated environmental ammonia in combination with a summer global warming scenario would challenge the ability of fish to adapt to alterations in the quality of their environment, most notably during periods of peak temperatures.


1994 ◽  
Vol 45 (5) ◽  
pp. 1432-1439 ◽  
Author(s):  
Giacomo Garibotto ◽  
Rodolfo Russo ◽  
Antonella Sofia ◽  
Maria Rita Sala ◽  
Cristina Robaudo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document