scholarly journals The role of the RNA binding proteins HuR and AUF1 in β1‐adrenergic receptor mRNA stability in heart failure (652.13)

2014 ◽  
Vol 28 (S1) ◽  
Author(s):  
Stephen Kraynik ◽  
Sarah Anthony ◽  
Melissa Kelley ◽  
Michael Tranter
2008 ◽  
Vol 26 (4) ◽  
pp. 493-501 ◽  
Author(s):  
Aldo Pende ◽  
Lidia Contini ◽  
Raffaella Sallo ◽  
Mario Passalacqua ◽  
Rasheeda Tanveer ◽  
...  

2013 ◽  
Vol 9 ◽  
pp. P847-P847
Author(s):  
Benjamin Wolozin ◽  
Tara Vanderweyde ◽  
Liqun Liu-Yesucevitz ◽  
Alpaslan Dedeoglu ◽  
Leonard Petrucelli ◽  
...  

2021 ◽  
Vol 15 ◽  
Author(s):  
Benjamin L. Zaepfel ◽  
Jeffrey D. Rothstein

Amyotrophic lateral sclerosis (ALS) is a progressive and fatal neurodegenerative disease that affects upper and lower motor neurons. Familial ALS accounts for a small subset of cases (<10–15%) and is caused by dominant mutations in one of more than 10 known genes. Multiple genes have been causally or pathologically linked to both ALS and frontotemporal dementia (FTD). Many of these genes encode RNA-binding proteins, so the role of dysregulated RNA metabolism in neurodegeneration is being actively investigated. In addition to defects in RNA metabolism, recent studies provide emerging evidence into how RNA itself can contribute to the degeneration of both motor and cortical neurons. In this review, we discuss the roles of altered RNA metabolism and RNA-mediated toxicity in the context of TARDBP, FUS, and C9ORF72 mutations. Specifically, we focus on recent studies that describe toxic RNA as the potential initiator of disease, disease-associated defects in specific RNA metabolism pathways, as well as how RNA-based approaches can be used as potential therapies. Altogether, we highlight the importance of RNA-based investigations into the molecular progression of ALS, as well as the need for RNA-dependent structural studies of disease-linked RNA-binding proteins to identify clear therapeutic targets.


Author(s):  
Bhawana Maurya ◽  
Satya Surabhi ◽  
Pranjali Pandey ◽  
Ashim Mukherjee ◽  
Mousumi Mutsuddi

2012 ◽  
Vol 91 (7) ◽  
pp. 651-658 ◽  
Author(s):  
V. Palanisamy ◽  
A. Jakymiw ◽  
E.A. Van Tubergen ◽  
N.J. D’Silva ◽  
K.L. Kirkwood

Cytokines are critical mediators of inflammation and host defenses. Regulation of cytokines can occur at various stages of gene expression, including transcription, mRNA export, and post- transcriptional and translational levels. Among these modes of regulation, post-transcriptional regulation has been shown to play a vital role in controlling the expression of cytokines by modulating mRNA stability. The stability of cytokine mRNAs, including TNFα, IL-6, and IL-8, has been reported to be altered by the presence of AU-rich elements (AREs) located in the 3′-untranslated regions (3′UTRs) of the mRNAs. Numerous RNA-binding proteins and microRNAs bind to these 3′UTRs to regulate the stability and/or translation of the mRNAs. Thus, this paper describes the cooperative function between RNA-binding proteins and miRNAs and how they regulate AU-rich elements containing cytokine mRNA stability/degradation and translation. These mRNA control mechanisms can potentially influence inflammation as it relates to oral biology, including periodontal diseases and oral pharyngeal cancer progression.


2013 ◽  
Vol 394 (8) ◽  
pp. 1077-1090 ◽  
Author(s):  
Kristin Wächter ◽  
Marcel Köhn ◽  
Nadine Stöhr ◽  
Stefan Hüttelmaier

Abstract The IGF2 mRNA-binding protein family (IGF2BPs) directs the cytoplasmic fate of various target mRNAs and controls essential cellular functions. The three IGF2BP paralogues expressed in mammals comprise two RNA-recognition motifs (RRM) as well as four KH domains. How these domains direct IGF2BP paralogue-dependent protein function remains largely elusive. In this study, we analyze the role of KH domains in IGF2BPs by the mutational GXXG-GEEG conversion of single KH domain loops in the context of full-length polypeptides. These analyses reveal that all four KH domains of IGF2BP1 and IGF2BP2 are essentially involved in RNA-binding in vitro and the cellular association with RNA-binding proteins (RBPs). Moreover the KH domains prevent the nuclear accumulation of these two paralogues and facilitate their recruitment to stress granules. The role of KH domains appears less pronounced in IGF2BP3, because GxxG-GEEG conversion in all four KH domains only modestly affects RNA-binding, subcellular localization and RNA-dependent protein association of this paralogue. These findings indicate paralogue-dependent RNA-binding properties of IGF2BPs which likely direct distinct cellular functions. Our findings suggest that IGF2BPs contact target RNAs via all four KH domains. This implies significant structural constraints, which presumably allow the formation of exceedingly stable protein-RNA complexes.


2007 ◽  
Vol 27 (18) ◽  
pp. 6569-6579 ◽  
Author(s):  
Luciano H. Apponi ◽  
Seth M. Kelly ◽  
Michelle T. Harreman ◽  
Alexander N. Lehner ◽  
Anita H. Corbett ◽  
...  

ABSTRACT mRNA stability is modulated by elements in the mRNA transcript and their cognate RNA binding proteins. Poly(U) binding protein 1 (Pub1) is a cytoplasmic Saccharomyces cerevisiae mRNA binding protein that stabilizes transcripts containing AU-rich elements (AREs) or stabilizer elements (STEs). In a yeast two-hybrid screen, we identified nuclear poly(A) binding protein 2 (Nab2) as being a Pub1-interacting protein. Nab2 is an essential nucleocytoplasmic shuttling mRNA binding protein that regulates poly(A) tail length and mRNA export. The interaction between Pub1 and Nab2 was confirmed by copurification and in vitro binding assays. The interaction is mediated by the Nab2 zinc finger domain. Analysis of the functional link between these proteins reveals that Nab2, like Pub1, can modulate the stability of specific mRNA transcripts. The half-life of the RPS16B transcript, an ARE-like sequence-containing Pub1 target, is decreased in both nab2-1 and nab2-67 mutants. In contrast, GCN4, an STE-containing Pub1 target, is not affected. Similar results were obtained for other ARE- and STE-containing Pub1 target transcripts. Further analysis reveals that the ARE-like sequence is necessary for Nab2-mediated transcript stabilization. These results suggest that Nab2 functions together with Pub1 to modulate mRNA stability and strengthen a model where nuclear events are coupled to the control of mRNA turnover in the cytoplasm.


2014 ◽  
Vol 16 (4) ◽  
pp. 482-489 ◽  
Author(s):  
Nikolay G. Kolev ◽  
Elisabetta Ullu ◽  
Christian Tschudi

Sign in / Sign up

Export Citation Format

Share Document