Functional characterization of cardiomyocytes derived from murine induced pluripotent stem cells in vitro

2009 ◽  
Vol 23 (12) ◽  
pp. 4168-4180 ◽  
Author(s):  
Alexey Kuzmenkin ◽  
Huamin Liang ◽  
Guoxing Xu ◽  
Kurt Pfannkuche ◽  
Hardy Eichhorn ◽  
...  
2011 ◽  
Vol 2011 ◽  
pp. 1-11 ◽  
Author(s):  
Reto Eggenschwiler ◽  
Komal Loya ◽  
Malte Sgodda ◽  
Francoise André ◽  
Tobias Cantz

Direct reprogramming of somatic cells into pluripotent cells by retrovirus-mediated expression of OCT4, SOX2, KLF4, and C-MYC is a promising approach to derive disease-specific induced pluripotent stem cells (iPSCs). In this study, we focused on three murine models for metabolic liver disorders: the copper storage disorder Wilson's disease (toxic-milk mice), tyrosinemia type 1 (fumarylacetoacetate-hydrolase deficiency, FAH−/−mice), and alpha1-antitrypsin deficiency (PiZ mice). Colonies of iPSCs emerged 2-3 weeks after transduction of fibroblasts, prepared from each mouse strain, and were maintained as individual iPSC lines. RT-PCR and immunofluorescence analyses demonstrated the expression of endogenous pluripotency markers. Hepatic precursor cells could be derived from these disease-specific iPSCs applying anin vitrodifferentiation protocol and could be visualized after transduction of a lentiviral albumin-GFP reporter construct. Functional characterization of these cells allowed the recapitulation of the disease phenotype for further studies of underlying molecular mechanisms of the respective disease.


Acta Naturae ◽  
2009 ◽  
Vol 1 (2) ◽  
pp. 91-92 ◽  
Author(s):  
M V Shutova ◽  
A N Bogomazova ◽  
M A Lagarkova ◽  
S L Kiselev

Sign in / Sign up

Export Citation Format

Share Document