scholarly journals A miR‐29a‐driven negative feedback loop regulates peripheral glucocorticoid receptor signaling

2019 ◽  
Vol 33 (5) ◽  
pp. 5924-5941 ◽  
Author(s):  
Christina Glantschnig ◽  
Mascha Koenen ◽  
Manuel Gil‐Lozano ◽  
Michael Karbiener ◽  
Ines Pickrahn ◽  
...  
Hypertension ◽  
2019 ◽  
Vol 74 (Suppl_1) ◽  
Author(s):  
Celina M Pollard ◽  
Victoria L Desimine ◽  
Shelby L Wertz ◽  
Arianna Perez ◽  
Barbara M Parker ◽  
...  

1991 ◽  
Vol 114 (3) ◽  
pp. 533-543 ◽  
Author(s):  
J B Welsh ◽  
G N Gill ◽  
M G Rosenfeld ◽  
A Wells

Activation of the EGF receptor tyrosine kinase by ligand indirectly activates a series of other cellular enzymes, including protein kinase C. To test the hypothesis that phosphorylation of the EGF receptor by protein kinase C provides an intracellular negative feedback loop to attenuate EGF receptor signaling, we used scanning EM to follow the characteristic EGF-induced retraction of lamellipodia and concomitant cell shape changes. Wild type and mutant EGF receptors were expressed in receptor-deficient NR6 cells. The mutant receptors were prepared by truncation at C' terminal residue 973 (c'973) to provide resistance to ligand-induced down regulation that strongly attenuates receptor signaling and by replacement of threonine 654 (T654) with alanine (A654) to remove the site of phosphorylation by protein kinase C. Cells expressing WT and c'973 EGF receptors demonstrated characteristic lamellipodial retraction after exposure to EGF, with the non-down regulating c'973 EGF receptors responding more rapidly. Exposure of cells to TPA blocked this response. Replacement of T654 by alanine resulted in EGF receptors that were resistant to TPA. Cells expressing the A654 mutation underwent more rapid and more extensive morphologic changes than cells with the corresponding T654 EGF receptor. In cells expressing T654 EGF receptors, down regulation of protein kinase C resulted in more rapid and extensive EGF-induced changes similar to those seen in cells expressing A654 EGF receptors. These data indicate that activation of protein kinase C and subsequent phosphorylation of the EGF receptor at T654 lead to rapid physiological attenuation of EGF receptor signaling.


2021 ◽  
Vol 22 (16) ◽  
pp. 8472
Author(s):  
Senem Aykul ◽  
Jordan Maust ◽  
Vijayalakshmi Thamilselvan ◽  
Monique Floer ◽  
Erik Martinez-Hackert

Adipose tissues (AT) expand in response to energy surplus through adipocyte hypertrophy and hyperplasia. The latter, also known as adipogenesis, is a process by which multipotent precursors differentiate to form mature adipocytes. This process is directed by developmental cues that include members of the TGF-β family. Our goal here was to elucidate, using the 3T3-L1 adipogenesis model, how TGF-β family growth factors and inhibitors regulate adipocyte development. We show that ligands of the Activin and TGF-β families, several ligand traps, and the SMAD1/5/8 signaling inhibitor LDN-193189 profoundly suppressed 3T3-L1 adipogenesis. Strikingly, anti-adipogenic traps and ligands engaged the same mechanism of action involving the simultaneous activation of SMAD2/3 and inhibition of SMAD1/5/8 signaling. This effect was rescued by the SMAD2/3 signaling inhibitor SB-431542. By contrast, although LDN-193189 also suppressed SMAD1/5/8 signaling and adipogenesis, its effect could not be rescued by SB-431542. Collectively, these findings reveal the fundamental role of SMAD1/5/8 for 3T3-L1 adipogenesis, and potentially identify a negative feedback loop that links SMAD2/3 activation with SMAD1/5/8 inhibition in adipogenic precursors.


2016 ◽  
Vol 24 (3) ◽  
pp. 421-432 ◽  
Author(s):  
Yanbo Wang ◽  
Hongwei Liang ◽  
Geyu Zhou ◽  
Xiuting Hu ◽  
Zhengya Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document