Paxillin controls actin stress fiber formation and migration of vascular smooth muscle cells by directly binding to the active Fyn

2021 ◽  
Vol 35 (12) ◽  
Author(s):  
Ying Zhang ◽  
Hiroko Kishi ◽  
Tomoka Morita ◽  
Sei Kobayashi
2015 ◽  
Vol 26 (25) ◽  
pp. 4589-4606 ◽  
Author(s):  
Jagadeesh Janjanam ◽  
Giri Kumar Chandaka ◽  
Sivareddy Kotla ◽  
Gadiparthi N. Rao

Monocyte chemotactic protein 1 (MCP1) stimulates vascular smooth muscle cell (VSMC) migration in vascular wall remodeling. However, the mechanisms underlying MCP1-induced VSMC migration have not been understood. Here we identify the signaling pathway associated with MCP1-induced human aortic smooth muscle cell (HASMC) migration. MCP1, a G protein–coupled receptor agonist, activates phosphorylation of cortactin on S405 and S418 residues in a time-dependent manner, and inhibition of its phosphorylation attenuates MCP1-induced HASMC G-actin polymerization, F-actin stress fiber formation, and migration. Cortactin phosphorylation on S405/S418 is found to be critical for its interaction with WAVE2, a member of the WASP family of cytoskeletal regulatory proteins required for cell migration. In addition, the MCP1-induced cortactin phosphorylation is dependent on PLCβ3-mediated PKCδ activation, and siRNA-mediated down-regulation of either of these molecules prevents cortactin interaction with WAVE2, affecting G-actin polymerization, F-actin stress fiber formation, and HASMC migration. Upstream, MCP1 activates CCR2 and Gαq/11 in a time-dependent manner, and down-regulation of their levels attenuates MCP1-induced PLCβ3 and PKCδ activation, cortactin phosphorylation, cortactin–WAVE2 interaction, G-actin polymerization, F-actin stress fiber formation, and HASMC migration. Together these findings demonstrate that phosphorylation of cortactin on S405 and S418 residues is required for its interaction with WAVE2 in MCP1-induced cytoskeleton remodeling, facilitating HASMC migration.


2010 ◽  
Vol 65 (5) ◽  
pp. 507-514 ◽  
Author(s):  
Zhigang Ma ◽  
Hao Wang ◽  
Liang Wu ◽  
Lei Zhu ◽  
Weihao Shi ◽  
...  

2007 ◽  
Vol 293 (1) ◽  
pp. H366-H375 ◽  
Author(s):  
MaryEllen Carlile-Klusacek ◽  
Victor Rizzo

The vasoactive protease thrombin is a known activator of the protease-activated receptor-1 (PAR1) via cleavage of its NH2 terminus. PAR1 activation stimulates the RhoA/Rho kinase signaling cascade, leading to myosin light chain (MLC) phosphorylation, actin stress fiber formation, and changes in endothelial monolayer integrity. Previous studies suggest that some elements of this signaling pathway are localized to caveolin-containing cholesterol-rich membrane domains. Here we show that PAR1 and key components of the PAR-associated signaling cascade localize to membrane rafts and caveolae in bovine aortic endothelial cells (BAEC). To investigate the functional significance of this localization, BAEC were pretreated with filipin (5 μg/ml, 5 min) to ablate lipid rafts before thrombin (100 nM) or PAR agonist stimulation. We found that diphosphorylation of MLC and the actin stress fiber formation normally induced by PAR activation were attenuated after lipid raft disruption. To target caveolae specifically, we used a small interferring RNA approach to knockdown caveolin-1 expression. Thrombin-induced MLC phosphorylation and stress fiber formation were not altered in caveolin-1-depleted cells, suggesting that lipid rafts, but not necessarily caveolae, modulate thrombin-activated signaling pathways leading to alteration of the actin cytoskeleton in endothelial cells.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zaixiong Ji ◽  
Jiaqi Li ◽  
Jianbo Wang

The uncontrolled proliferation and migration of vascular smooth muscle cells is a critical step in the pathological process of restenosis caused by vascular intimal hyperplasia. Jujuboside B (JB) is one of the main biologically active ingredients extracted from the seeds of Zizyphus jujuba (SZJ), which has the properties of anti-platelet aggregation and reducing vascular tension. However, its effects on restenosis after vascular intervention caused by VSMCs proliferation and migration remain still unknown. Herein, we present novel data showing that JB treatment could significantly reduce the neointimal hyperplasia of balloon-damaged blood vessels in Sprague-Dawley (SD) rats. In cultured VSMCs, JB pretreatment significantly reduced cell dedifferentiation, proliferation, and migration induced by platelet-derived growth factor-BB (PDGF-BB). JB attenuated autophagy and reactive oxygen species (ROS) production stimulated by PDGF-BB. Besides, JB promoted the phosphorylation of adenosine monophosphate-activated protein kinase (AMPK) and the expression of peroxisome proliferator-activated receptor-γ (PPAR-γ). Notably, inhibition of AMPK and PPAR-γ partially reversed the ability of JB to resist the proliferation and migration of VSMCs. Taken as a whole, our findings reveal for the first time the anti-restenosis properties of JB in vivo and in vitro after the endovascular intervention. JB antagonizes PDGF-BB-induced phenotypic switch, proliferation, and migration of vascular smooth muscle cells partly through AMPK/PPAR-γ pathway. These results indicate that JB might be a promising clinical candidate drug against in-stent restenosis, which provides a reference for further research on the prevention and treatment of vascular-related diseases.


Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Marius Vantler ◽  
Lenard Mustafov ◽  
Evren Caglayan ◽  
Stephan Rosenkranz

Proliferation, migration, and apoptosis of vascular smooth muscle cells (VSMC) are pivotal determinants of the pathogenesis of vascular diseases, which are mainly controlled by growth factor dependent activation of PI 3-Kinase (PI3K). Growth factors like platelet-derived growth factor (PDGF) activate class IA PI3Ks containing one of three p110 catalytic subunits (p110alpha, p110beta, and p110delta). We investigated the specific function of these isoforms for PDGF-controlled proliferation, migration, and apoptosis of VSMC using novel isoform-specific inhibitors. PDGF-dependent proliferation and migration solely depended on p110alpha. Stimulation of VSMC with PDGF-BB (50 ng/ml) mediated a 2.5±0.4 increase ( p <0.05) of DNA-synthesis (BrdU incorporation assay) and induced a 3.4+/−0.7 fold increase ( p <0.05) of VSMC migration (modified Boyden-chamber). Inhibition of p110alpha with PIK075 (1 μ M, Ki=100 nM) completely abrogated PDGF-dependent DNA-synthesis and migration ( p <0,05), whereas inhibitors against p110beta (TGX 221, 1 μ M) or p110delta (IC87114 1 μ M) had no influence. Consistently, PDGF-induced DNA-synthesis and migration were suppressed by siRNA-dependent downregulation of p110alpha ( p <0,05) whereas p110beta or p110delta knockdown had no effect. Interestingly, stimulation of VSMC with PDGF-BB (50 ng/ml) induced anti- or proapoptotic effects depending on the duration of PDGFR activation. Incubation of VSMC with H 2 O 2 (50 μ M, 16h) led to a 2.8±0.7 fold increase ( p >0.05) of apoptosis (Cell Death Detection ELISA). Simultanous addition of PDGF-BB (50 ng/ml) significantly diminished the H 2 O 2 -induced apoptosis (52±7%, p >0.05). In contrast, prestimulation with PDGF-BB 24h prior to the addition of H 2 O 2 led to an increase of H 2 O 2 -induced apoptosis (7.8±1.3, p >0.05). The anti- as well as the proapoptotic effect depended strictly on p110alpha as PIK075 (1 μ M, p <0,05) or p110alpha specific siRNA completely abrogated PDGF-BB-mediated pro- as well as antiapoptotic effects. Our results demonstrate that only the catalytical PI3K subunit p110alpha mediates the growth factor-induced atherogenic responses. Therefore, p110alpha represents an interesting therapeutic target for prevention of atherosclerosis and restenosis formation.


Sign in / Sign up

Export Citation Format

Share Document