Clevidipine in Adult Cardiac Surgical Patients

2002 ◽  
Vol 96 (5) ◽  
pp. 1086-1094 ◽  
Author(s):  
James M. Bailey ◽  
Wei Lu ◽  
Jerrold H. Levy ◽  
James G. Ramsay ◽  
Linda Shore-Lesserson ◽  
...  

Background Treatment of elevated blood pressure is frequently necessary after cardiac surgery to minimize postoperative bleeding and to attenuate afterload changes associated with hypertension. The purpose of this study was to investigate the pharmacodynamics and pharmacokinetics of a short-acting calcium channel antagonist, clevidipine, in the treatment of hypertension in postoperative cardiac surgical patients. Methods Postoperative cardiac surgical patients were randomized to receive placebo or one of six doses of clevidipine. Hemodynamic parameters were recorded and blood samples were drawn for determination of clevidipine plasma concentrations during infusion and after discontinuation of clevidipine. The concentration-response relation was analyzed using logistic regression, and pharmacokinetic models were applied to the data using population analysis. Results There were significant decreases in mean arterial blood pressure and systemic vascular resistance at doses greater than or equal to 1.37 microg. kg-1. min-1. There were no changes in heart rate, central venous pressure, pulmonary artery occlusion pressure, or cardiac index with increasing doses of clevidipine. The clevidipine C50 value for a 10% or greater decrease in mean arterial pressure was 9.7 microg/l and for a 20% or greater decrease in mean arterial pressure was 26.3 microg/l. The pharmacokinetics of clevidipine were best described with a three-compartment model with a volume of distribution of 32.4 l and clearance of 4.3 l/min. The early phase of drug disposition had a half-life of 0.6 min. The context-sensitive half-time is less than 2 min for up to 12 h of administration. Conclusion Clevidipine is a calcium channel antagonist with a very short duration of action that effectively decreases systemic vascular resistance and mean arterial pressure without changing heart rate, cardiac index, or cardiac filling pressures.

1998 ◽  
Vol 94 (1) ◽  
pp. 49-55 ◽  
Author(s):  
Sharmini Puvi-Rajasingham ◽  
Gareth D. P. Smith ◽  
Adeola Akinola ◽  
Christopher J. Mathias

1. In human sympathetic denervation due to primary autonomic failure, food and exercise in combination may produce a cumulative blood pressure lowering effect due to simultaneous splanchnic and skeletal muscle dilatation unopposed by corrective cardiovascular reflexes. We studied 12 patients with autonomic failure during and after 9 min of supine exercise, when fasted and after a liquid meal. Standing blood pressure was also measured before and after exercise. 2. When fasted, blood pressure fell during exercise from 162 ± 7/92 ± 4 to 129 ± 9/70 ± 5 mmHg (mean arterial pressure by 22 ± 5%), P < 0.0005. After the meal, blood pressure fell from 159 ± 8/88 ± 6 to 129 ± 6/70 ± 4 mmHg (mean arterial pressure by 22 ± 3%), P < 0.0001, and further during exercise to 123 ± 6/61 ± 3 mmHg (mean arterial pressure by 9 ± 3%), P < 0.01. The stroke distance—heart rate product, an index of cardiac output, did not change after the meal. During exercise, changes in the stroke distance—heart rate product were greater when fasted. 3. Resting forearm and calf vascular resistance were higher when fasted. Calf vascular resistance fell further after exercise when fasted. Resting superior mesenteric artery vascular resistance was lower when fed; 0.19 ± 0.02 compared with 032 ± 0.06, P < 0.05. After exercise, superior mesenteric artery vascular resistance had risen by 82%, to 0.53 ± 0.12, P < 0.05 (fasted) and by 47%, to 0.29 ± 0.05, P < 0.05 (fed). 4. On standing, absolute levels of blood pressure were higher when fasted [83 ± 7/52 ± 7 compared with 71 ± 2/41 ± 3 (fed), each P < 0.05]. Subjects were more symptomatic on standing post-exercise when fed. 5. In human sympathetic denervation, exercise in the fed state lowered blood pressure further than when fasted and worsened symptoms of postural hypotension.


2008 ◽  
Vol 108 (5) ◽  
pp. 802-811 ◽  
Author(s):  
Robert A. Dyer ◽  
Jenna L. Piercy ◽  
Anthony R. Reed ◽  
Carl J. Lombard ◽  
Leann K. Schoeman ◽  
...  

Background Hemodynamic responses to spinal anesthesia (SA) for cesarean delivery in patients with severe preeclampsia are poorly understood. This study used a beat-by-beat monitor of cardiac output (CO) to characterize the response to SA. The hypothesis was that CO would decrease from baseline values by less than 20%. Methods Fifteen patients with severe preeclampsia consented to an observational study. The monitor employed used pulse wave form analysis to estimate nominal stroke volume. Calibration was by lithium dilution. CO and systemic vascular resistance were derived from the measured stroke volume, heart rate, and mean arterial pressure. In addition, the hemodynamic effects of phenylephrine, the response to delivery and oxytocin, and hemodynamics during recovery from SA were recorded. Hemodynamic values were averaged for defined time intervals before, during, and after SA. Results Cardiac output remained stable from induction of SA until the time of request for analgesia. Mean arterial pressure and systemic vascular resistance decreased significantly from the time of adoption of the supine position until the end of surgery. After oxytocin administration, systemic vascular resistance decreased and heart rate and CO increased. Phenylephrine, 50 mug, increased mean arterial pressure to above target values and did not significantly change CO. At the time of recovery from SA, there were no clinically relevant changes from baseline hemodynamic values. Conclusions Spinal anesthesia in severe preeclampsia was associated with clinically insignificant changes in CO. Phenylephrine restored mean arterial pressure but did not increase maternal CO. Oxytocin caused transient marked hypotension, tachycardia, and increases in CO.


2004 ◽  
Vol 287 (5) ◽  
pp. H2309-H2315 ◽  
Author(s):  
Madeleine Lindqvist ◽  
Anders Melcher ◽  
Paul Hjemdahl

Cardiovascular and sympathoadrenal responses to a reproducible mental stress test were investigated in eight healthy young men before and during intravenous infusion of the nitric oxide (NO) synthesis inhibitor N-monomethyl-l-arginine (l-NMMA). Before l-NMMA, stress responses included significant increases in heart rate, mean arterial pressure, and cardiac output (CO) and decreases in systemic and forearm vascular resistance. Arterial plasma norepinephrine (NE) increased. At rest after 30 min of infusion of l-NMMA (0.3 mg·kg−1·min−1 iv), mean arterial pressure increased from 98 ± 4 to 108 ± 3 mmHg ( P < 0.001) because of an increase in systemic vascular resistance from 12.9 ± 0.5 to 18.5 ± 0.9 units ( P < 0.001). CO decreased from 7.7 ± 0.4 to 5.9 ± 0.3 l/min ( P < 0.01). Arterial plasma NE decreased from 2.08 ± 0.16 to 1.47 ± 0.14 nmol/l. Repeated mental stress during continued infusion of l-NMMA (0.15 mg·kg−1·min−1) induced qualitatively similar cardiovascular responses, but there was a marked attenuation of the increase in mean arterial blood pressure, resulting in similar “steady-state” blood pressures during mental stress without and with NO blockade. Increases in heart rate and CO were attenuated, but stress-induced decreases in systemic and forearm vascular resistance were essentially unchanged. Arterial plasma NE increased less than during the first stress test. Thus the increased arterial tone at rest during l-NMMA infusion is compensated for by attenuated increases in blood pressure during mental stress, mainly through a markedly attenuated CO response and suppressed sympathetic nerve activity.


1982 ◽  
Vol 53 (3) ◽  
pp. 576-581 ◽  
Author(s):  
R. Fagard ◽  
P. Lijnen ◽  
L. Vanhees ◽  
A. Amery

The response of the systemic circulation to acute inhibition of the converting enzyme with 25 mg of oral Captopril (Squibb) was studied in six normal sodium-replete male volunteers at rest and during exercise, together with its effects on exercise capacity for graded uninterrupted exercise. In recumbent subjects at rest Captopril did not affect arterial pressure or heart rate, and plasma renin activity rose 2.5-fold (P less than 0.05). In subjects in the sitting position, at rest and during exercise until exhaustion, Captopril reduced mean brachial intra-arterial pressure by an average of 7 Torr in comparison to placebo (P less than 0.001). Captopril's hypotensive effect was caused by a reduction of systemic vascular resistance (P less than 0.01), without changes of cardiac output (measured by CO2 rebreathing), heart rate, or stroke volume. Plasma renin activity was significantly higher during Captopril (P less than 0.001). Peak oxygen uptake and exercise duration were the same after administration of Captopril or placebo. The data demonstrate that the renin-angiotensin system is not involved in the homeostasis of blood pressure in supine sodium-replete humans, but has a modest role in blood pressure regulation when posture is changed from supine to upright. The orthostatic effect of Captopril is maintained during upright exercise. Furthermore the reduction of systemic vascular resistance by Captopril does not affect peak oxygen uptake.


1999 ◽  
Vol 86 (6) ◽  
pp. 1890-1896 ◽  
Author(s):  
D. Slamowitz ◽  
L. Chen ◽  
S. M. Scharf

There are few studies investigating the influence of vagally mediated reflexes on the cardiovascular response to apneas. In 12 sedated preinstrumented pigs, we studied the effects of vagotomy during apneas, controlling for apnea periodicity and thoracic mechanical effects. Nonobstructive apneas were produced by paralyzing and mechanically ventilating the animals, then turning the ventilator off and on every 30 s. Before vagotomy, relative to baseline, apnea caused increased mean arterial pressure (MAP; +19 ± 25%, P < 0.05), systemic vascular resistance (SVR; +33 ± 16%, P < 0.0005), and heart rate (HR; +5 ± 6%, P < 0.05) and decreased cardiac output (CO) and stroke volume (SV; −16 ± 10% P < 0.001). After vagotomy, no significant change occurred in MAP, SVR, and SV during apneas, but CO and HR increased relative to baseline. HR was always greater (∼14%, P < 0.01) during the interapneic interval compared with during apnea. We conclude that vagally mediated reflexes are important mediators of the apneic pressor response. HR increases after apnea termination are related, at least in part, to nonvagally mediated reflexes.


1993 ◽  
Vol 85 (2) ◽  
pp. 157-163 ◽  
Author(s):  
R. J. MacFadyen ◽  
M. Tree ◽  
A. F. Lever ◽  
J. L. Reid

1. Haemodynamic and hormonal responses to infused angiotensin II were studied in conscious salt-deplete dogs during infusion of D-glucose or losartan (DuP753/MK954). 2. Mean arterial pressure (118±13mmHg) fell rapidly after losartan (60 min 106±18 mmHg) with a rise in heart rate (107±16 beats/min) from baseline (98±17 beats/min). Pressor responses to angiotensin II during D-glucose infusion (6 ng min−1 kg−1, 99±10 mmHg; 18 ng min−1 kg−1, 140±15 mmHg; 54 ng min−1 kg−1, 157±12 mmHg; 162 ng min−1 kg−1, 178±14 mmHg) showed a parallel shift during losartan infusion with very similar pressures in response to higher rates of angiotensin II infusion (54 ng min−1 kg−1,108 ± 17 mmHg;162 ng min−1 kg−1 138±14 mmHg; 486 ng min−1 kg−1, 155±14 mmHg; 1458 ng min−1 kg−1, 177 ± 12 mmHg). Losartan caused a fall in baseline systemic vascular resistance. Despite the similar mean arterial pressure, the rise in systemic vascular resistance after angiotensin II during D-glucose infusion (162 ng min−1 kg−1, 8065± 1967 dyn s cm−5) was reduced during losartan infusion (1458 ng min−1 kg−1, 6645 ±1720 dyn s cm−5. Losartan caused a small rise in cardiac output related to a rise in heart rate and increased stroke volume. Pressure infusions of angiotensin II caused a fall in cardiac output during D-glucose infusion, which was blocked during losartan infusion. The rise in heart rate in response to angiotensin II was similar during both D-glucose and losartan infusion, but with higher absolute values during losartan alone. There was a linear relationship between heart rate and the plasma concentration of angiotensin II, which was unaffected by losartan. Pulmonary pressure was marginally elevated by losartan, related to the rise in cardiac output, and was much less sensitive to angiotensin II infusion, rising only at the highest rate of infusion during both D-glucose and losartan infusion. 3. Losartan infusion alone caused a rise in plasma angiotensin II concentration with a fall in aldosterone concentration. During pressor infusions the measured angiotensin II concentrations suggested that losartan increased the clearance of angiotensin II. 4. Losartan has complex effects on cardiovascular function. The pressor response of mean arterial pressure to angiotensin II shows competitive inhibition, but this marks subtle effects on cardiac output and heart rate, in addition to systemic vascular resistance. In addition to elevating endogenous angiotensin II and suppressing aldosterone, losartan may enhance clearance of infused angiotensin II.


2002 ◽  
Vol 93 (6) ◽  
pp. 1966-1972 ◽  
Author(s):  
Maria T. E. Hopman ◽  
Jan T. Groothuis ◽  
Marcel Flendrie ◽  
Karin H. L. Gerrits ◽  
Sibrand Houtman

The purpose of the present study was to determine the effect of a spinal cord injury (SCI) on resting vascular resistance in paralyzed legs in humans. To accomplish this goal, we measured blood pressure and resting flow above and below the lesion (by using venous occlusion plethysmography) in 11 patients with SCI and in 10 healthy controls (C). Relative vascular resistance was calculated as mean arterial pressure in millimeters of mercury divided by the arterial blood flow in milliliters per minute per 100 milliliters of tissue. Arterial blood flow in the sympathetically deprived and paralyzed legs of SCI was significantly lower than leg blood flow in C. Because mean arterial pressure showed no differences between both groups, leg vascular resistance in SCI was significantly higher than in C. Within the SCI group, arterial blood flow was significantly higher and vascular resistance significantly lower in the arms than in the legs. To distinguish between the effect of loss of central neural control vs. deconditioning, a group of nine SCI patients was trained for 6 wk and showed a 30% increase in leg blood flow with unchanged blood pressure levels, indicating a marked reduction in vascular resistance. In conclusion, vascular resistance is increased in the paralyzed legs of individuals with SCI and is reversible by training.


Author(s):  
Sidharth Sraban Routray ◽  
Ramakanta Mohanty

ABSTRACTObjective: During laparoscopic surgeries, pneumoperitoneum can lead to various pathophysiologic changes in the cardiovascular system resulting inhypertension and tachycardia. Search for ideal drug to prevent this hemodynamic response goes on. The aim of our study was to evaluate the effect oforally administered moxonidine in attenuating the hemodynamic responses that occur during the laparoscopic surgeries.Methods: A total of 50 adult acetylsalicylic acid I and II patients scheduled for elective laparoscopic surgeries were selected for this prospectiverandomized double-blinded study. They were randomly allocated into two groups: moxonidine group (M) and placebo group (P). M group receivedoral moxonidine 0.3 mg at 8 pm on the day before surgery and at 8 am on the day of surgery. P group received a placebo at the same timing as that ofthe M group.Results: Following pneumoperitoneum rise in systolic blood pressure (SBP), diastolic BP (DBP), mean arterial pressure (MAP), and heart rate (HR)was higher in P group in comparison to M group which was statistically significant.Conclusion: Significant rise in HR, SBP, DBP, and mean BP was noted in the P group in comparison to moxonidine group. Moxonidine provided betterperioperative hemodynamic stability in patients undergoing laparoscopic surgeries.Keywords: Moxonidine, Stress response, Laparoscopic.


2020 ◽  
Vol 9 (1) ◽  
pp. 8-15
Author(s):  
Arya Justisia Sani ◽  
Ardhana Tri Arianto ◽  
Muhammad Husni Thamrin

Latar Belakang dan Tujuan: Peningkatan respon hemodinamik yang disebabkan oleh nyeri dapat menyebabkan peningkatan aliran darah otak dan tekanan intrakranial. Blok scalp pada kraniotomi menumpulkan respon hemodinamik karena rangsangan nyeri serta mengurangi penambahan analgesi lain. Penelitian ini bertujuan untuk mengetahui efektifitas blok scalp sebagai analgetik pada kraniotomi.Subjek dan Metode: Penelitian ini menggunakan uji klinik acak tersamar ganda pada 36 pasien dengan status fisik ASA 1–3 dilakukan operasi kraniotomi eksisi dan memenuhi kriteria inklusi. Sampel dibagi menjadi kelompok I (dengan blok scalp) dan kelompok II (tanpa blok scalp). Blok dilakukan sesaat setelah induksi anestesi. Digunakan levobupivakain 0,375% sebanyak 3 ml tiap insersi, pada masing-masing saraf. Tekanan darah, tekanan arteri rata-rata, detak jantung sebelum intubasi dan setelah intubasi, pemasangan pin, insisi kulit dan insisi duramater serta total kebutuhan fentanyl tambahan dicatat. Data yang diperoleh dianalisis dengan program komputer SPSS versi 17 lalu diuji menggunakan uji Kruskal-Wallis atau One-way ANOVA. Batas kemaknaan yang diambil adalah p < 0,05.Hasil: Selama kraniotomi, detak jantung, tekanan darah, tekanan arteri rata-rata secara signifikan lebih tinggi pada pasien tanpa blok scalp terutama pada saat pemasangan pin. Hasil uji statistik menunjukkan perbedaan signifikan, penambahan fentanyl pada pasien dengan blok scalp lebih sedikit dibandingkan tanpa blok scalp, p=0,000 (p<0,05).Simpulan: Blok scalp levobupivakain efektif dalam menurunkan respon hemodinamik terutama pada saat pemasangan pin. Pasien kraniotomi dengan blok scalp membutuhkan penambahan fentanyl lebih sedikit. Differences on Hemodynamic Response with Levobupivacaine Scalp Block in Craniotomy SurgeryAbstractBackground and Objective: Increased hemodynamic response caused by pain can lead to increased cerebral blood flow and intracranial pressure. Scalp block in craniotomy blunts hemodynamic response due to pain and reduce other analgesics addition. This study aims to determine effectiveness of scalp blocks as analgesic in craniotomy.Subject and Method: This study used a double-blind randomized clinical trial in 36 patients with physical status ASA 1-3 who underwent craniotomy and met inclusion criteria. Samples were divided into group I (with scalp block) and group II (without scalp block). Scalp Block was performed right after anesthesia induction. Using levobupivacaine 0.375% 3 ml for each insertion. Blood pressure, mean arterial pressure, heart rate before and after intubation, during pin placement, skin incision and duramater incision and total need for additional fentanyl were recorded. SPSS version 17 was used and data were analysed using Kruskal-Wallis or One-way ANOVA. Statistical significance was accepted at p < 0.05.Result: During craniotomy, heart rate, blood pressure, mean arterial pressure were significantly higher in patients without scalp block especially during pin placement. Statistical test showed significant difference, additional fentanyl in patients with scalp blocks was lesser, p = 0.000 (p <0.05). Conclusion: Levobupivacaine scalp block was effective to blunt hemodynamic response especially during pin placement. Scalp block also decreased additional fentanyl in craniotomy.


1995 ◽  
Vol 79 (5) ◽  
pp. 1546-1555 ◽  
Author(s):  
B. Pannier ◽  
M. A. Slama ◽  
G. M. London ◽  
M. E. Safar ◽  
J. L. Cuche

Pulsatile changes in blood pressure and arterial diameter were studied noninvasively with applanation tonometry and echo-tracking techniques at the sites of the common carotid artery (CCA) and the carotid arterial bulb (CAB) in 12 healthy volunteers. Determinations were performed before and during application of -10 and -40 mmHg lower body negative pressure (LBNP) to investigate noninvasively the tensile forces acting on the CAB. Together with significantly decreased mean arterial pressure, increased heart rate, forearm vascular resistance, and plasma norepinephrine, the -40 mmHg LBNP stimulus produced the following significant changes in CCA and CAB hemodynamics: 1) for the same decrease in mean arterial pressure, a greater decrease in carotid than in brachial pulse pressure was observed (P < 0.01) due to a significant change in pressure wave transmission and in the timing of the carotid backward pressure wave; and 2) a highly significant decrease in pulsatile changes in diameter and tangential tension occurred, with a greater decrease in systolic than in diastolic tangential tension. Subsequently, cyclic tangential tension decreased more substantially than mean tangential tension. The cyclic changes in tension were quite significant after -40 mmHg LBNP but were already observed for mild -10 mmHg LBNP in which mean systemic blood pressure and heart rate were not modified. During -10 and -40 mmHg LBNP, CCA and CAB compliance and distensibility were unchanged. This study provides evidence that the autonomic nervous system activation produced by the LBNP procedure is associated with significant changes in pressure-wave amplification and in cyclic tensile forces acting on the CAB. These changes, which may occur even for mild LBNP, should be taken into account when interpreting results of the LBNP procedure in humans.


Sign in / Sign up

Export Citation Format

Share Document