Is water diffusion restricted in human brain white matter? An echo-planar NMR imaging study

Neuroreport ◽  
1993 ◽  
Vol 4 (7) ◽  
pp. 887-890 ◽  
Author(s):  
Denis Le Bihan ◽  
Robert Turner ◽  
Philippe Douek
NeuroImage ◽  
2019 ◽  
Vol 185 ◽  
pp. 379-387 ◽  
Author(s):  
Jelle Veraart ◽  
Els Fieremans ◽  
Dmitry S. Novikov

2009 ◽  
Vol 21 (7) ◽  
pp. 1406-1421 ◽  
Author(s):  
Elizabeth A. Olson ◽  
Paul F. Collins ◽  
Catalina J. Hooper ◽  
Ryan Muetzel ◽  
Kelvin O. Lim ◽  
...  

Healthy participants (n = 79), ages 9–23, completed a delay discounting task assessing the extent to which the value of a monetary reward declines as the delay to its receipt increases. Diffusion tensor imaging (DTI) was used to evaluate how individual differences in delay discounting relate to variation in fractional anisotropy (FA) and mean diffusivity (MD) within whole-brain white matter using voxel-based regressions. Given that rapid prefrontal lobe development is occurring during this age range and that functional imaging studies have implicated the prefrontal cortex in discounting behavior, we hypothesized that differences in FA and MD would be associated with alterations in the discounting rate. The analyses revealed a number of clusters where less impulsive performance on the delay discounting task was associated with higher FA and lower MD. The clusters were located primarily in bilateral frontal and temporal lobes and were localized within white matter tracts, including portions of the inferior and superior longitudinal fasciculi, anterior thalamic radiation, uncinate fasciculus, inferior fronto-occipital fasciculus, corticospinal tract, and splenium of the corpus callosum. FA increased and MD decreased with age in the majority of these regions. Some, but not all, of the discounting/DTI associations remained significant after controlling for age. Findings are discussed in terms of both developmental and age-independent effects of white matter organization on discounting behavior.


2019 ◽  
Vol 125 ◽  
pp. 198-206 ◽  
Author(s):  
Giacomo Bertolini ◽  
Emanuele La Corte ◽  
Domenico Aquino ◽  
Elena Greco ◽  
Zefferino Rossini ◽  
...  

1985 ◽  
Vol 44 (5) ◽  
pp. 1411-1418 ◽  
Author(s):  
Tony F. Cruz ◽  
Mario A. Moscarello

Author(s):  
Mohammadreza Ramzanpour ◽  
Mohammad Hosseini-Farid ◽  
Mariusz Ziejewski ◽  
Ghodrat Karami

Abstract Axons as microstructural constituent elements of brain white matter are highly oriented in extracellular matrix (ECM) in one direction. Therefore, it is possible to model the human brain white matter as a unidirectional fibrous composite material. A micromechanical finite element model of the brain white matter is developed to indirectly measure the brain white matter constituents’ properties including axon and ECM under tensile loading. Experimental tension test on corona radiata conducted by Budday et al. 2017 [1] is used in this study and one-term Ogden hyperelastic constitutive model is applied to characterize its behavior. By the application of genetic algorithm (GA) as a black box optimization method, the Ogden hyperelastic parameters of axon and ECM minimizing the error between numerical finite element simulation and experimental results are measured. Inverse analysis is conducted on the resultant optimized parameters shows high correlation of coefficient (>99%) between the numerical and experimental data which verifies the accuracy of the optimization procedure. The volume fraction of axons in porcine brain white matter is taken to be 52.7% and the stiffness ratio of axon to ECM is perceived to be 3.0. As these values are not accurately known for human brain white matter, we study the material properties of axon and ECM for different stiffness ratio and axon volume fraction values. The results of this study helps to better understand the micromechanical structure of the brain and micro-level injuries such as diffuse axonal injury.


NeuroImage ◽  
2016 ◽  
Vol 127 ◽  
pp. 135-143 ◽  
Author(s):  
Bibek Dhital ◽  
Christian Labadie ◽  
Frank Stallmach ◽  
Harald E. Möller ◽  
Robert Turner

Sign in / Sign up

Export Citation Format

Share Document