COMPETITIVE GROWTH OF ENRICHED LYMPHO- HEMATOPOIETIC STEM CELLS (LHSC) IN LONG- TERM BONE MARROW CULTURES (LTBMC)

1992 ◽  
Vol 11 (2) ◽  
pp. 148
Author(s):  
F. Vec- chini ◽  
S. S. Boggs
Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 31-31
Author(s):  
Maria Rosa Lidonnici ◽  
Giulia Chianella ◽  
Francesca Tiboni ◽  
Matteo Barcella ◽  
Ivan Merelli ◽  
...  

Background Beta-thalassemia (Bthal) is a genetic disorder due to mutations in the ß-globin gene, leading to a reduced or absent production of HbA, which interferes with erythroid cell maturation and limits normal red cell production. Patients are affected by severe anemia, hepatosplenomegaly, and skeletal abnormalities due to rapid expansion of the erythroid compartment in bone marrow (BM) caused by ineffective erythropoiesis. In a classical view of hematopoiesis, the blood cell lineages arise via a hierarchical scheme starting with multipotent stem cells that become increasingly restricted in their differentiation potential through oligopotent and then unipotent progenitors. In human, novel purification strategies based on differential expression of CD49f and CD90 enrich for long-term (49f+) and short-term (49f−) repopulating hematopoietic stem cells (HSCs), with distinct cell cycle properties, but similar myeloid (My) and lymphoid (Ly) potential. In this view, it has been proposed that erythroid (Ery) and megakaryocytic (Mk) fates branch off directly from CD90-/49f− multipotent progenitors (MPPs). Recently, a new study suggested that separation between multipotent (Ery/My/Ly) long-term repopulating cells (Subset1, defined as CLEC9AhighCD34low) and cells with only My/Ly and no Ery potential (Subset2, defined as CLEC9AlowCD34high)occurs within the phenotypic HSC/MPP and CD49f+ HSCs compartment. Aims A general perturbed and stress condition is present in the thalassemic BM microenvironment. Since its impact on the hematopoietic cell subpopulations is mostly unknown, we will investigate which model of hematopoiesis/erythropoiesis occurs in Bthal. Moreover, since Beta-Thalassemia is an erythropoietic disorder, it could be considered as a disease model to study the 'erythroid branching' in the hematopoietic hierarchy. Methods We defined by immunophenotype and functional analysis the lineage commitment of most primitive HSC/MPP cells in patients affected by this pathology compared to healthy donors (HDs). Furthermore, in order to delineate the transcriptional networks governing hematopoiesis in Beta-thalassemia, RNAseq analysis was performed on sorted hematopoietic subpopulations from BM of Bthal patients and HDs. By droplet digital PCR on RNA purified from mesenchymal stromal cells of Bthal patients, we evaluated the expression levels of some niche factors involved in the regulation of hematopoiesis and erythropoiesis. Moreover, the protein levels in the BM plasma were analyzed by performing ELISA. Results Differences in the primitive compartment were observed with an increased proportion of multipotent progenitors in Bthal patients compared to HDs. The Subset1 compartment is actually endowed with an enhanced Ery potential. Focusing on progenitors (CD34+ CD38+) and using a new sorting scheme that efficiently resolved My, Ery, and Mk lineage fates, we quantified the new My (CD71-BAH1-/+) and Ery (CD71+ BAH1-/+) subsets and found a reduction of Ery subset in Bthal samples. We can hypothesize that the erythroid-enriched subsets are more prone to differentiate quickly due to the higher sensitivity to Epo stimuli or other bone marrow niche signals. Gene set enrichment analysis, perfomed on RNAseq data, showed that Bthal HSC/MPP presented negative enrichment of several pathways related to stemness and quiescence. Cellular processes involved in erythropoiesis were found altered in Bthal HSC. Moreover, some master erythroid transcription factors involved were overrepresented in Bthal across the hematopoietic cascade. We identified the niche factors which affect molecular pathways and the lineage commitment of Bthal HSCs. Summary/Conclusions Overall, these data indicate that Bthal HSCs are more cycling cells which egress from the quiescent state probably towards an erythroid differentiation, probably in response to a chronic BM stimulation. On the other hand,some evidences support our hypothesis of an 'erythroid branching' already present in the HSC pool, exacerbated by the pathophysiology of the disease. Disclosures No relevant conflicts of interest to declare.


PLoS ONE ◽  
2012 ◽  
Vol 7 (11) ◽  
pp. e50849 ◽  
Author(s):  
Yuko Goto-Koshino ◽  
Yumi Fukuchi ◽  
Fumi Shibata ◽  
Daichi Abe ◽  
Kana Kuroda ◽  
...  

Blood ◽  
1994 ◽  
Vol 84 (5) ◽  
pp. 1442-1449 ◽  
Author(s):  
CM Verfaillie ◽  
JS Miller

Abstract Human hematopoietic stem cells are thought to express the CD34 stem cell antigen, low numbers of HLA-DR and Thy1 antigens, but no lineage commitment antigens, CD38, or CD45RA antigens. However, fluorescence- activated cell sorted CD34+ subpopulations contain not more than 1% to 5% primitive progenitors capable of initiating and sustaining growth in long-term bone marrow culture initiating cells (LTBMC-ICs). We have recently shown that culture of fresh human marrow CD34+/HLA-DR- cells separated from a stromal layer by a microporous membrane (“stroma- noncontact” culture) results in the maintenance of 40% of LTBMC-ICs. We hypothesized that reselection of CD34+ subpopulations still present after several weeks in stroma-noncontact cultures may result in the selection of cells more highly enriched for human LTBMC-ICs. Fresh marrow CD34+/HLA-DR- cells were cultured for 2 to 3 weeks in stroma- noncontact cultures. Cultured progeny was then sorted on the basis of CD34, HLA-DR, or CD33 antigen expression, and sorted cells evaluated for the presence of LTBMC-ICs by limiting dilution analysis. We show that (1) LTBMC-ICs are four times more frequent in cultured CD34+/HLA- DR- cells (4.6% +/- 1.7%) than in cultured CD34+/HLA-DR- cells (1.3% +/- 0.4%). This suggests that HLA-DR antigen expression may depend on the activation status of primitive cells rather than their lineage commitment. We then sorted cultured cells on the basis of the myeloid commitment antigen, CD33. (2) These studies show that cultured CD34+/CD33- cells contain 4% to 8% LTBMC-ICs, whereas cultured CD34+/CD33+bright cells contain only 0.1% +/- 0.03% LTBMC-ICs. Because LTBMC-ICs are maintained significantly better in stroma-noncontact cultures supplemented with macrophage inflammatory protein 1 alpha (MIP- 1 alpha) and interleukin-3 (IL-3) (Verfaillie et al, J Exp Med 179:643, 1994), we evaluated the frequency of LTBMC-ICs in CD34+/CD33- cells present in such cultures. (3) CD34+/CD33- cells present in MIP-1 alpha + IL-3-supplemented cultures contain up to 30% LTBMC-ICs. The increased frequency of LTBMC-ICs in cultured CD34+ subpopulations may be the result of terminal differentiation of less primitive progenitors, loss of cells that fail to respond to the culture conditions or recruitment of quiescent LTBMC-ICs. The capability to select progenitor populations containing up to 30% LTBMC-ICs should prove useful in studies examining the growth requirements, self-renewal, and multilineage differentiation capacity of human hematopoietic stem cells at the single-cell level.


Blood ◽  
1994 ◽  
Vol 84 (1) ◽  
pp. 74-83 ◽  
Author(s):  
SJ Szilvassy ◽  
S Cory

Abstract Efficient gene delivery to multipotential hematopoietic stem cells would greatly facilitate the development of effective gene therapy for certain hematopoietic disorders. We have recently described a rapid multiparameter sorting procedure for significantly enriching stem cells with competitive long-term lymphomyeloid repopulating ability (CRU) from 5-fluorouracil (5-FU)-treated mouse bone marrow. The sorted cells have now been tested as targets for retrovirus-mediated delivery of a marker gene, NeoR. They were cocultured for 4 days with fibroblasts producing a high titer of retrovirus in medium containing combinations of the hematopoietic growth factors interleukin-3 (IL-3), IL-6, c-kit ligand (KL), and leukemia inhibitory factor (LIF) and then injected into lethally irradiated recipients, together with sufficient “compromised” bone marrow cells to provide short-term support. Over 80% of the transplanted mice displayed high levels (> or = 20%) of donor- derived leukocytes when analyzed 4 to 6 months later. Proviral DNA was detected in 87% of these animals and, in half of them, the majority of the hematopoietic cells were marked. Thus, infection of the stem cells was most effective. The tissue and cellular distribution of greater than 100 unique clones in 55 mice showed that most sorted stem cells had lymphoid as well as myeloid repopulating potential. Secondary transplantation provided strong evidence for infection of very primitive stem cells because, in several instances, different secondary recipients displayed in their marrow, spleen, thymus and day 14 spleen colony-forming cells the same proviral integration pattern as the primary recipient. Neither primary engraftment nor marking efficiency varied for stem cells cultured in IL-3 + IL-6, IL-3 + IL-6 + KL, IL-3 + IL-6 + LIF, or all four factors, but those cultured in IL-3 + IL-6 + LIF appeared to have lower secondary engraftment potential. Provirus expression was detected in 72% of the strongly marked mice, albeit often at low levels. Highly efficient retroviral marking of purified lymphomyeloid repopulating stem cells should enhance studies of stem cell biology and facilitate analysis of genes controlling hematopoietic differentiation and transformation.


Blood ◽  
2015 ◽  
Vol 125 (17) ◽  
pp. 2678-2688 ◽  
Author(s):  
Marisa Bowers ◽  
Bin Zhang ◽  
Yinwei Ho ◽  
Puneet Agarwal ◽  
Ching-Cheng Chen ◽  
...  

Key Points Bone marrow OB ablation leads to reduced quiescence, long-term engraftment, and self-renewal capacity of hematopoietic stem cells. Significantly accelerated leukemia development and reduced survival are seen in transgenic BCR-ABL mice following OB ablation.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1200-1200
Author(s):  
Hui Yu ◽  
Youzhong Yuan ◽  
Xianmin Song ◽  
Feng Xu ◽  
Hongmei Shen ◽  
...  

Abstract Hematopoietic stem cells (HSCs) are significantly restricted in their ability to regenerate themselves in the irradiated hosts and this exhausting effect appears to be accelerated in the absence of the cyclin-dependent kinase inhibitor (CKI), p21. Our recent study demonstrated that unlike p21 absence, deletion of the distinct CKI, p18 results in a strikingly positive effect on long-term engraftment owing to increased self-renewing divisions in vivo (Yuan et al, 2004). To test the extent to which enhanced self-renewal in the absence of p18 can persist over a prolonged period of time, we first performed the classical serial bone marrow transfer (sBMT). The activities of hematopoietic cells from p18−/− cell transplanted mice were significantly higher than those from p18+/+ cell transplanted mice during the serial transplantation. To our expectation, there was no detectable donor p18+/+ HSC progeny in the majority (4/6) of recipients after three rounds of sBMT. However, we observed significant engraftment levels (66.7% on average) of p18-null progeny in all recipients (7/7) within a total period of 22 months. In addition, in follow-up with our previous study involving the use of competitive bone marrow transplantation (cBMT), we found that p18−/− HSCs during the 3rd cycle of cBMT in an extended long-term period of 30 months were still comparable to the freshly isolated p18+/+ cells from 8 week-old young mice. Based on these two independent assays and the widely-held assumption of 1-10/105 HSC frequency in normal unmanipulated marrow, we estimated that p18−/− HSCs had more than 50–500 times more regenerative potential than p18+/+ HSCs, at the cellular age that is equal to a mouse life span. Interestingly, p18 absence was able to significantly loosen the accelerated exhaustion of hematopoietic repopulation caused by p21 deficiency as examined in the p18/p21 double mutant cells with the cBMT model. This data directly indicates the opposite effect of these two molecules on HSC durability. To define whether p18 absence may override the regulatory mechanisms that maintain the HSC pool size within the normal range, we performed the transplantation with 80 highly purified HSCs (CD34-KLS) and then determined how many competitive reconstitution units (CRUs) were regenerated in the primary recipients by conducting secondary transplantation with limiting dilution analysis. While 14 times more CRUs were regenerated in the primary recipients transplanted with p18−/−HSCs than those transplanted with p18+/+ HSCs, the level was not beyond that found in normal non-transplanted mice. Therefore, the expansion of HSCs in the absence of p18 is still subject to some inhibitory regulation, perhaps exerted by the HSC niches in vivo. Such a result was similar to the effect of over-expression of the transcription factor, HoxB4 in hematopoietic cells. However, to our surprise, the p18 mRNA level was not significantly altered by over-expression of HoxB4 in Lin-Sca-1+ cells as assessed by real time PCR (n=4), thereby suggesting a HoxB4-independent transcriptional regulation on p18 in HSCs. Taken together, our current results shed light on strategies aimed at sustaining the durability of therapeutically transplanted HSCs for a lifetime treatment. It also offers a rationale for the feasibility study intended to temporarily target p18 during the early engraftment for therapeutic purposes.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1289-1289
Author(s):  
Ping Xia ◽  
Richard Emmanuel ◽  
Kuo Isabel ◽  
Malik Punam

Abstract We have previously shown that self-inactivating lentiviral vectors infect quiescent hematopoietic stem cells (HSC), express long-term, resist proviral silencing in HSC and express in a lineage specific manner. However, their random integration into the host chromosome results in variable expression, dependent upon the flanking host chromatin (Mohamedali et al, Mol. Therapy 2004). Moreover, the recent occurrence of leukemogenesis from activation of a cellular oncogene by the viral enhancer elements calls for safer vector designs, with expression cassettes that can be ‘insulated’ from flanking cellular genes. We analyzed the role of the chicken β-globin locus hypersensitive site 4 insulator element (cHS4) in a self-inactivating (SIN) lentiviral vector in the RBC progeny of hematopoietic stem cells (HSC) in long term in vivo. We designed an erythroid-specific SIN-lentiviral vector I8HKGW, expressing GFP driven by the human ankyrin gene promoter and containing two erythroid-specific enhancer elements and compared it to an analogous vector I8HKGW-I, where the cHS4 insulator was inserted in the SIN deletion to flank the I8HKGW expression cassette at both ends upon integration. First, murine erythroleukemia (MEL) cells were transduced at <5% transduction efficiency and GFP+ cells were sorted to generate clones. Single copy MEL clones showed no difference in the mean GFP fluorescence intensity (MFI) between the I8HKGW+ and the I8HKGW-I+ MEL clones. However, there was a reduction in the chromatin position effect variegation (PEV), reflected by reduced coefficient of variation of GFP expression (CV) in I8HKGW-I clones (n=115; P<0.01), similar to in vitro results reported by Ramezani et al (Blood 2003). Next, we examined for expression and PEV in the RBC progeny of HSC, using the secondary murine bone marrow transplant model. Lethally irradiated C57Bl6 (CD45.2) mice were transplanted with I8HKGW and I8HKGW-I transduced B6SJL (CD45.1) Sca+Lin- HSC and 4–6 months later, secondary transplants were performed. Mice were analyzed 3–4 months following secondary transplants (n=43). While expression from both I8HKGW and I8HKGW-I vectors appeared similar in secondary mice (46±6.0% vs. 48±3.6% GFP+ RBC; MFI 31±2.6 vs. 29±1.4), there were 0.37 vs. 0.22 copies/cell in I8HKGW and I8HKGW-I secondary recipients, respectively (n=43), suggesting that the probability of GFP expression from I8HKGW-I vectors was superior when equalized for vector copy. The CV of GFP fluorescence in RBC was remarkably reduced to 55±1.7 in I8HKGW-I vs. 196±32 in I8HKGW RBC (P<0.001). We therefore, analyzed these data at a clonal level in secondary CFU-S and tertiary CFU-S. The I8HKGW-I secondary CFU-S had more GFP+ cells (32.4±4.4%) vs. I8HKGW CFU-S (8.1±1.2%, n=143, P<0.1x10E-11). Similarly, I8HKGW-I tertiary CFU-S also had more GFP+ cells (25±1.8%) vs. I8HKGW CFU-S (6.3±0.8%, n=166, P<0.3x10E-10). We also plated bone marrow from secondary mice in methylcellulose and analyzed GFP expression in individual BFU-E. The I8HKGW-I tertiary BFU-E had more GFP+ cells (28±3.9%) vs. I8HKGW BFU-E (11±5%, n=50, P<0.03) with significantly reduced CV (67 vs 125, n=50, P<6.6X10E-7). Taken together, the ‘insulated’ erythroid-specific SIN-lentiviral vector increased the probability of expression of proviral integrants and reduced PEV in vivo, resulting in higher, consistent transgene expression in the erythroid cell progeny of HSC. In addition, the enhancer blocking effect of the cHS4, although not tested here, would further improve bio-safety of these vectors for gene therapy for RBC disorders.


Sign in / Sign up

Export Citation Format

Share Document