scholarly journals Quantitative Analysis for Estimating Binding Potential of the Brain Serotonin Transporter with [11C]McN5652

2002 ◽  
Vol 22 (4) ◽  
pp. 490-501 ◽  
Author(s):  
Yoko Ikoma ◽  
Tetsuya Suhara ◽  
Hinako Toyama ◽  
Tetsuya Ichimiya ◽  
Akihiro Takano ◽  
...  

[11C](+)McN5652 is a selective serotonin reuptake inhibitor with subnanomolar potency for the serotonin transporter, and is currently being used for positron emission tomography studies. However, quantification of the regional [11C](+)McN5652 binding potential in vivo is a controversial issue because of its complex characteristics. The authors examined the regional differences in nonspecific binding and proposed simple methods for estimating the binding potential of [11C](+)McN5652. The regional difference in nonspecific binding was evaluated by the activity ratio of the thalamus compared with the cerebellum for inactive-isomer [11C](−)McN5652 and [11C](+)McN5652 saturation studies. The distribution volume of the thalamus was approximately 1.16 times larger than that of the cerebellum. The thalamus-to-cerebellum distribution volume ratio was estimated by nonlinear least square and graphical methods, with and without arterial input function. The graphical method with k2′ without blood sampling was practical and most applicable for estimation of the distribution volume ratio because this method is more stable than the nonlinear least square method in the simulation study. Binding potential estimated with the distribution volume ratio of [11C](+)McN5652 and the correction with distribution volume ratio of [11C](−)McN5652 represent the most reliable parameters for the assessment of serotonin transporter binding.

2012 ◽  
Vol 33 (1) ◽  
pp. 59-66 ◽  
Author(s):  
Matthew D Walker ◽  
Katherine Dinelle ◽  
Rick Kornelsen ◽  
Siobhan McCormick ◽  
Chenoa Mah ◽  
...  

Longitudinal measurements of dopamine (DA) uptake and turnover in transgenic rodents may be critical when developing disease-modifying therapies for Parkinson's disease (PD). We demonstrate methodology for such measurements using [18F]fluoro-3,4-dihydroxyphenyl- L-alanine ([18F]FDOPA) positron emission tomography (PET). The method was applied to 6-hydroxydopamine lesioned rats, providing the first PET-derived estimates of DA turnover for this species. Control ( n = 4) and unilaterally lesioned ( n = 11) rats were imaged multiple times. Kinetic modeling was performed using extended Patlak, incorporating a kloss term for metabolite washout, and modified Logan methods. Dopaminergic terminal loss was measured via [11C]-(+)-dihydrotetrabenazine (DTBZ) PET. Clear striatal [18F]FDOPA uptake was observed. In the lesioned striatum the effective DA turnover increased, shown by a reduced effective distribution volume ratio ( EDVR) for [18F]FDOPA. Effective distribution volume ratio correlated ( r > 0.9) with the [11C]DTBZ binding potential ( BPND). The uptake and trapping rate ( kref) decreased after lesioning, but relatively less so than [11C]DTBZ BPND. For normal controls, striatal estimates were kref = 0.037 ± 0.005 per minute, EDVR = 1.07 ± 0.22 and kloss = 0.024 ± 0.003 per minute (30 minutes turnover half-time), with repeatability (coefficient of variation) ≤11%. [18F]fluoro-3,4-dihydroxyphenyl- L-alanine PET enables measurements of DA turnover in the rat, which is useful for developing novel therapies for PD.


2018 ◽  
Vol 40 (2) ◽  
pp. 365-373 ◽  
Author(s):  
Sandeep SV Golla ◽  
Emma E Wolters ◽  
Tessa Timmers ◽  
Rik Ossenkoppele ◽  
Chris WJ van der Weijden ◽  
...  

[18F]Flortaucipir is a PET tau tracer used to visualize tau binding in Alzheimer’s disease (AD) in vivo. The present study evaluated the performance of several methods to obtain parametric images of [18F]flortaucipir. One hundred and thirty minutes dynamic PET scans were performed in 10 AD patients and 10 controls. Parametric images were generated using different linearization and basis function approaches. Regional binding potential (BPND) and volume of distribution (VT) values obtained from the parametric images were compared with corresponding values derived using the reversible two-tissue compartment model (2T4k_VB). Performance of SUVr parametric images was assessed by comparing values with distribution volume ratio (DVR) and SRTM-derived BPND estimates obtained using non-linear regression (NLR). Spectral analysis (SA) ( r2 = 0.92; slope = 0.99) derived VT correlated well with NLR-derived VT. RPM ( r2 = 0.95; slope = 0.98) derived BPND correlated well with NLR-derived DVR. Although SUVr80–100 min correlated well with NLR-derived DVR ( r2 = 0.91; slope = 1.09), bias in SUVr appeared to depend on uptake time and underlying level of specific binding. In conclusion, RPM and SA provide parametric images comparable to the NLR estimates. Individual SUVr values are biased compared with DVR and this bias requires further study in a larger dataset in order to understand its consequences.


2005 ◽  
Vol 25 (7) ◽  
pp. 785-793 ◽  
Author(s):  
Ramin V Parsey ◽  
Victoria Arango ◽  
Doreen M Olvet ◽  
Maria A Oquendo ◽  
Ronald L Van Heertum ◽  
...  

Two measures used in brain imaging are binding potential (BP) and the specific to nonspecific equilibrium partition coefficient ( V3“). V3” determined using the 5-HT1A ligand [11C]WAY-100635 is sensitive to changes in the free and nonspecific binding of the ligand in the reference region ( V2). Healthy female volunteers have higher 5-HT1A BP but not V3“ compared with men, because V2 is higher in women. While there could be several explanations for this observation, we hypothesized that women have more 5-HT1A receptors in the cerebellum. We explore the cerebellum to define a subregion that more accurately represents the free and nonspecific binding, potentially allowing the use of V3”. A quantitative autoradiogram in human brain using [3H]WAY-100635 identified a cerebellar subregion devoid of 5-HT1A receptors. In vivo 5-HT1A receptors were evaluated using [11C]WAY-100635 in 12 healthy women and 13 healthy men. Each subject had a metabolite-corrected arterial input function. The autoradiogram demonstrates the lowest concentration of 5-HT1A receptors in the cerebellar white matter (CW) and highest concentration in the cerebellar vermis (CV). The CW volume of distribution ( VT) is lower than CV. Cerebellar white matter is adequately modeled by a one-tissue compartmental model, while a two-tissue model is necessary to model CV or the total cerebellum (CT). Women have a higher CW VT compared with men, suggesting a difference in V2. Use of CW improves identifiability and time stability of BP in cortical regions. Cerebellar white matter might be a better reference region for use in future 5-HT1A studies using [11C]WAY-100635. With CW as a reference region, V3“ cannot be used to detect differences in 5-HT1A receptors between men and women, suggesting the need for arterial input functions to determine BP.


2020 ◽  
Author(s):  
Chen Huang ◽  
Fan Ding ◽  
Yong Hao ◽  
Zhoumi Hu ◽  
Cheng Wang ◽  
...  

Abstract Purpose: Translocator protein (TSPO), an outer mitochondrial membrane protein, is regarded as a key biomarker for neuroinflammation in a variety of neurodegenerative diseases. In this study, we aim to evaluate two highly specific TSPO radiotracers [18F]VUIIS1009A and [18F]VUIIS1009B in a mild cerebral ischemic rat model, and to compare their in vivo performance to the well-established TSPO probe [18F]DPA-714 for neuroinflammation imaging. With multiple graphic analytical methods tested and macro parameters determined, we propose to find a suitable and best quantification method to profile neuroinflammation and measure TSPO density with the three TSPO radiotracers.Methods: Cerebral ischemia rat model was created and imaged using [18F]VUIIS1009A, [18F]VUIIS1009B and [18F]DPA-714. Displacement studies using non-radioactive analogs were performed to evaluate the binding specificities of [18F]VUIIS1009A and [18F]VUIIS1009B individually. Imaging analysis using arterial plasma input functions (AIFs) was employed to generate Logan plots and parametric images of total distribution volume (VT) for each radiotracer. Reference Logan model using contralateral brain as a reference region was introduced to generate parametric images for binding potential (BPND). Results: When compared to [18F]DPA-714, [18F]VUIIS1009B demonstrated higher binding potential (BPND) and distribution volume ratio (DVR). Parameter images of BPND and VT also indicate [18F]VUIIS1009B has a superior imaging profile with higher BPND and DVR when compared with other two radiotracers in TSPO imaging. Correlation analysis between BPND for [18F]VUIIS1009B and [18F]DPA-714 also indicates [18F]VUIIS1009B is more sensitive than [18F]DPA-714 in TSPO density measurement.Conclusions: This study demonstrates the superiority of [18F]VUIIS1009B to [18F]VUIIS1009A and [18F]DPA-714 in the neuroinflammation imaging. It also demonstrates that [18F]VUIIS1009B PET imaging coupled with parameter mapping (VT and BPND) and graphic analysis using Logan analysis and reference Logan analysis holds great promise for neuroinflammation characterization and TSPO density measurement.


2020 ◽  
Author(s):  
Naoyuki Obokata ◽  
Chie Seki ◽  
Takeshi Hirata ◽  
Jun Maeda ◽  
Hideki Ishii ◽  
...  

AbstractPurposePhosphodiesterase (PDE) 7 is a potential therapeutic target for neurological and inflammatory diseases, although in-vivo visualization of PDE7 has not been successful. In this study, we aimed to develop [11C]MTP38 as a novel positron emission tomography (PET) ligand for PDE7.Methods[11C]MTP38 was radiosynthesized by 11C-cyanation of a bromo precursor with [11C]HCN. PET scans of rat and rhesus monkey brains and in-vitro autoradiography of brain sections derived from these species were conducted with [11C]MTP38. In monkeys, dynamic PET data were analyzed with an arterial input function to calculate the total distribution volume (VT). The non-displaceable binding potential (BPND) in the striatum was also determined by a reference tissue model with cerebellar reference. Finally, striatal occupancy of PDE7 by an inhibitor was calculated in monkeys according to changes in BPND.Results[11C]MTP38 was synthesized with radiochemical purity ≥ 99.4% and molar activity of 38.6 ± 12.6 GBq/μmol. Autoradiography revealed high radioactivity in the striatum and its reduction by non-radiolabeled ligands, in contrast with unaltered autoradiographic signals in other regions. In-vivo PET after radioligand injection to rats and monkeys demonstrated that radioactivity was rapidly distributed to the brain and intensely accumulated in the striatum relative to the cerebellum. Correspondingly, estimated VT values in the monkey striatum and cerebellum were 3.59 and 2.69 mL/cm3, respectively. The cerebellar VT value was unchanged by pretreatment with unlabeled MTP38. Striatal BPND was reduced in a dose-dependent manner after pretreatment with MTP-X, a PDE7 inhibitor. Relationships between PDE7 occupancy by MTP-X and plasma MTP-X concentration could be described by Hill’s sigmoidal function.ConclusionWe have provided the first successful preclinical demonstration of in-vivo PDE7 imaging with a specific PET radioligand. [11C]MTP38 is a feasible radioligand for evaluating PDE7 in the brain and is currently being applied to a first-in-human PET study.


2020 ◽  
Vol 7 (3) ◽  
pp. e691 ◽  
Author(s):  
Svetlana Bezukladova ◽  
Jouni Tuisku ◽  
Markus Matilainen ◽  
Anna Vuorimaa ◽  
Marjo Nylund ◽  
...  

ObjectiveTo evaluate in vivo the co-occurrence of microglial activation and microstructural white matter (WM) damage in the MS brain and to examine their association with clinical disability.Methods18-kDa translocator protein (TSPO) brain PET imaging was performed for evaluation of microglial activation by using the radioligand [11C](R)-PK11195. TSPO binding was evaluated as the distribution volume ratio (DVR) from dynamic PET images. Diffusion tensor imaging (DTI) and conventional MRI (cMRI) were performed at the same time. Mean fractional anisotropy (FA) and mean (MD), axial, and radial (RD) diffusivities were calculated within the whole normal-appearing WM (NAWM) and segmented NAWM regions appearing normal in cMRI. Fifty-five patients with MS and 15 healthy controls (HCs) were examined.ResultsMicrostructural damage was observed in the NAWM of the MS brain. DTI parameters of patients with MS were significantly altered in the NAWM compared with an age- and sex-matched HC group: mean FA was decreased, and MD and RD were increased. These structural abnormalities correlated with increased TSPO binding in the whole NAWM and in the temporal NAWM (p < 0.05 for all correlations; p < 0.01 for RD in the temporal NAWM). Both compromised WM integrity and increased microglial activation in the NAWM correlated significantly with higher clinical disability measured with the Expanded Disability Status Scale score.ConclusionsWidespread structural disruption in the NAWM is linked to neuroinflammation, and both phenomena associate with clinical disability. Multimodal PET and DTI allow in vivo evaluation of widespread MS pathology not visible using cMRI.


2018 ◽  
Vol 39 (11) ◽  
pp. 2172-2180 ◽  
Author(s):  
Sandeep SV Golla ◽  
Sander CJ Verfaillie ◽  
Ronald Boellaard ◽  
Sofie M Adriaanse ◽  
Marissa D Zwan ◽  
...  

Accumulation of amyloid beta can be visualized using [18F]florbetapir positron emission tomography. The aim of this study was to identify the optimal model for quantifying [18F]florbetapir uptake and to assess test–retest reliability of corresponding outcome measures. Eight Alzheimer’s disease patients (age: 67 ± 6 years, Mini-Mental State Examination (MMSE): 23 ± 3) and eight controls (age: 63 ± 4 years, MMSE: 30 ± 0) were included. Ninety-minute dynamic positron emission tomography scans, together with arterial blood sampling, were acquired immediately following a bolus injection of 294 ± 32 MBq [18F]florbetapir. Several plasma input models and the simplified reference tissue model (SRTM) were evaluated. The Akaike information criterion was used to identify the preferred kinetic model. Compared to controls, Alzheimer’s disease patients had lower MMSE scores and evidence for cortical Aβ pathology. A reversible two-tissue compartment model with fitted blood volume fraction (2T4k_VB) was the preferred model for describing [18F]florbetapir kinetics. SRTM-derived non-displaceable binding potential (BPND) correlated well (r2 = 0.83, slope = 0.86) with plasma input-derived distribution volume ratio. Test–retest reliability for plasma input-derived distribution volume ratio, SRTM-derived BPND and SUVr(50–70) were r = 0.88, r = 0.91 and r = 0.86, respectively. In vivo kinetics of [18F]florbetapir could best be described by a reversible two-tissue compartmental model and [18F]florbetapir BPND can be reliably estimated using an SRTM.


2012 ◽  
Vol 43 (4) ◽  
pp. 881-894 ◽  
Author(s):  
L. Tuominen ◽  
J. Salo ◽  
J. Hirvonen ◽  
K. Någren ◽  
P. Laine ◽  
...  

BackgroundThe psychobiological model of personality by Cloninger and colleagues originally hypothesized that interindividual variability in the temperament dimension ‘harm avoidance’ (HA) is explained by differences in the activity of the brain serotonin system. We assessed brain serotonin transporter (5-HTT) density in vivo with positron emission tomography (PET) in healthy individuals with high or low HA scores using an ‘oversampling’ study design.MethodSubjects consistently in either upper or lower quartiles for the HA trait were selected from a population-based cohort in Finland (n = 2075) with pre-existing Temperament and Character Inventory (TCI) scores. A total of 22 subjects free of psychiatric and somatic disorders were included in the matched high- and low-HA groups. The main outcome measure was regional 5-HTT binding potential (BPND) in high- and low-HA groups estimated with PET and [11C]N,N-dimethyl-2-(2-amino-4-methylphenylthio)benzylamine ([11C]MADAM). In secondary analyses, 5-HTT BPND was correlated with other TCI dimensions.Results5-HTT BPND did not differ between high- and low-HA groups in the midbrain or any other brain region. This result remained the same even after adjusting for other relevant TCI dimensions. Higher 5-HTT BPND in the raphe nucleus predicted higher scores in ‘self-directedness’.ConclusionsThis study does not support an association between the temperament dimension HA and serotonin transporter density in healthy subjects. However, we found a link between high serotonin transporter density and high ‘self-directedness’ (ability to adapt and control one's behaviour to fit situations in accord with chosen goals and values). We suggest that biological factors are more important in explaining variability in character than previously thought.


Sign in / Sign up

Export Citation Format

Share Document