The Role of Baroreceptor Reflex Activation in the Responses Following Centrally Administered Angiotensin II

1985 ◽  
Vol 3 (4) ◽  
pp. 408
Author(s):  
H Becker ◽  
Th Unger ◽  
M A Petty ◽  
D Ganten ◽  
R E Lang
2002 ◽  
Vol 283 (2) ◽  
pp. R451-R459 ◽  
Author(s):  
Ling Xu ◽  
Alan F. Sved

Angiotensin II (ANG II) has complex actions on the cardiovascular system. ANG II may act to increase sympathetic vasomotor outflow, but acutely the sympathoexcitatory actions of exogenous ANG II may be opposed by ANG II-induced increases in arterial pressure (AP), evoking baroreceptor-mediated decreases in sympathetic nerve activity (SNA). To examine this hypothesis, the effect of ANG II infusion on lumbar SNA was measured in unanesthetized chronic sinoaortic-denervated rats. Chronic sinoaortic-denervated rats had no reflex heart rate (HR) responses to pharmacologically evoked increases or decreases in AP. Similarly, in these denervated rats, nitroprusside-induced hypotension had no effect on lumbar SNA; however, phenylephrine-induced increases in AP were still associated with transient decreases in SNA. In control rats, infusion of ANG II (100 ng · kg−1 · min−1 iv) increased AP and decreased HR and SNA. In contrast, ANG II infusion increased lumbar SNA and HR in sinoaortic-denervated rats. In rats that underwent sinoaortic denervation surgery but still had residual baroreceptor reflex-evoked changes in HR, the effect of ANG II on HR and SNA was variable and correlated to the extent of baroreceptor reflex impairment. The present data suggest that pressor concentrations of ANG II in rats act rapidly to increase lumbar SNA and HR, although baroreceptor reflexes normally mask these effects of ANG II. Furthermore, these studies highlight the importance of fully characterizing sinoaortic-denervated rats used in experiments examining the role of baroreceptor reflexes.


1981 ◽  
Vol 240 (1) ◽  
pp. F30-F37
Author(s):  
R. E. Katholi ◽  
S. P. Bishop ◽  
S. Oparil ◽  
T. N. James

Reflex vasoconstriction that occurs in the kidney of the dog can be the result of either of two mechanisms. The first is by activation of the renal sympathetic nerves and the second by reflex activation of catecholamine flow through an adrenorenal rete. Both reflex mechanisms can be activated by transient hypotension caused by experimentally induced atrial fibrillation in the sodium-replete pentobarbital-anesthetized dog. This study was undertaken to measure and compare the magnitude of changes in renal function that occur when these reflex mechanisms are activated and to evaluate the possible role of intrarenal angiotensin II in these two reflex effects. Reflex activation of catecholamine flow through an adrenorenal rete in intact or denervated kidneys produced a 26 +/- 3% decrease in renal plasma flow, a 23 +/- 4% decrease in glomerular filtration rate, a 58 +/- 7% decrease in urinary sodium excretion, and a 4 +/- 1% increase in filtration fraction, but no change in the fractional distribution of intrarenal blood flow. Changes of a similar direction and magnitude were seen in the same animals during reflex activation of the renal sympathetic nerves in the kidneys with intact or ligated adrenorenal rete. The same studies were performed after the intrarenal action of angiotensin II was blocked with [Sar1,Ala8]angiotensin II and similar responses were seen. Both of these reflexes appear to be important mechanisms by which the kidney can maintain vascular volume, and neither depends on intrarenal angiotensin II activity.


1989 ◽  
Vol 256 (5) ◽  
pp. R1111-R1120 ◽  
Author(s):  
M. E. Clement ◽  
R. B. McCall

The purpose of the present investigation was to determine the role of the midline medulla in mediating the trigeminal depressor response. Previously we found that lesions of the midline medulla abolished the decrease in blood pressure resulting from electrical stimulation of the spinal trigeminal complex. Electrical stimulation (5 Hz) of the spinal trigeminal tract elicited a decrease in arterial blood pressure that was associated with an inhibition of sympathetic nerve activity recorded from the inferior cardiac nerve of anesthetized cats. The effect of single shocks applied to the trigeminal complex on sympathetic activity was determined using computer-averaging techniques. Single shock stimulation consistently elicited an excitation of sympathetic activity that was followed by an inhibition of sympathetic nerve discharge. The gamma-aminobutyric acid antagonist picrotoxin blocked the depressor response elicited by electrical stimulation of the midline medulla but not by stimulation of the spinal trigeminal complex. Extracellular recordings of the discharges of midline medullary neurons were made to determine the effects of trigeminal stimulation on sympathoinhibitory, sympathoexcitatory, and serotonin neurons. Sympathoinhibitory and sympathoexcitatory neurons were identified by the relationship between unitary discharges and sympathetic nerve activity and by their response to baroreceptor reflex activation. Serotonin (5-HT) neurons were identified using criteria previously developed in our laboratory. These included 1) a slow regular discharge rate, 2) sensitivity to the inhibitory action of the 5-HT1A agonist 8-OH 8-hydroxy-2-(di-n-propylamino)tetralin, 3) failure to respond to baroreceptor reflex activation, and 4) the discharges of the 5-HT neurons were not related to sympathetic activity. Stimulation of the spinal trigeminal complex typically inhibited the discharges of sympathoinhibitory neurons. In contrast, stimulation of the trigeminal complex consistently excited both sympathoexcitatory and 5-HT neurons. These results are discussed in relationship to the role of the midline medulla in mediating the trigeminal depressor response.


2020 ◽  
Vol 21 (9) ◽  
pp. 892-901 ◽  
Author(s):  
Ana Luiza Ataide Carneiro de Paula Gonzaga ◽  
Vitória Andrade Palmeira ◽  
Thomas Felipe Silva Ribeiro ◽  
Larissa Braga Costa ◽  
Karla Emília de Sá Rodrigues ◽  
...  

Background: Pediatric tumors remain the highest cause of death in developed countries. Research on novel therapeutic strategies with lesser side effects is of utmost importance. In this scenario, the role of Renin-Angiotensin System (RAS) axes, the classical one formed by angiotensinconverting enzyme (ACE), Angiotensin II and AT1 receptor and the alternative axis composed by ACE2, Angiotensin-(1-7) and Mas receptor, have been investigated in cancer. Objective: This review aimed to summarize the pathophysiological role of RAS in cancer, evidence for anti-tumor effects of ACE2/Angiotensin-(1-7)/Mas receptor axis and future therapeutic perspectives for pediatric cancer. Methods: Pubmed, Scopus and Scielo were searched in regard to RAS molecules in human cancer and pediatric patients. The search terms were “RAS”, “ACE”, “Angiotensin-(1-7)”, “ACE2”, “Angiotensin II”, “AT1 receptor”, “Mas receptor”, “Pediatric”, “Cancer”. Results: Experimental studies have shown that Angiotensin-(1-7) inhibits the growth of tumor cells and reduces local inflammation and angiogenesis in several types of cancer. Clinical trials with Angiotensin-( 1-7) or TXA127, a pharmaceutical grade formulation of the naturally occurring peptide, have reported promising findings, but not enough to recommend medical use in human cancer. In regard to pediatric cancer, only three articles that marginally investigated RAS components were found and none of them evaluated molecules of the alternative RAS axis. Conclusion: Despite the potential applicability of Angiotensin-(1-7) in pediatric tumors, the role of this molecule was never tested. Further clinical trials are necessary, also including pediatric patients, to confirm safety and efficiency and to define therapeutic targets.


2020 ◽  
Vol 16 ◽  
Author(s):  
Mayank Chaudhary

Background:: Renin angiotensin system (RAS) is a critical pathway involved in blood pressure regulation. Octapeptide, angiotensin II (Ang aII), is biologically active compound of RAS pathway which mediates its action by binding to either angiotensin II type 1 receptor (AT1R) or angiotensin II type 2 receptor (AT2R). Binding of Ang II to AT1R facilitates blood pressure regulation whereas AT2R is primarily involved in wound healing and tissue remodelling. Objective:: Recent studies have highlighted additional role of AT2R to counter balance detrimental effects of AT1R. Activation of angiotensin II type 2 receptor using AT2R agonist has shown effect on natriuresis and release of nitric oxide. Additionally, AT2R activation has been found to inhibit angiotensin converting enzyme (ACE) and enhance angiotensin receptor blocker (ARB) activity. These findings highlight the potential of AT2R as novel therapeutic target against hypertension. Conclusion:: The potential role of AT2R highlights the importance of exploring additional mechanisms that might be crucial for AT2R expression. Epigenetic mechanisms including DNA methylation and histone modification have been explored vastly with relation to cancer but role of such mechanisms on expression of AT2R has recently gained interest.


Sign in / Sign up

Export Citation Format

Share Document