Nitric oxide, reactive oxygen species, and skeletal muscle contraction

2001 ◽  
Vol 33 (3) ◽  
pp. 371-376 ◽  
Author(s):  
MICHAEL B. REID
2013 ◽  
Vol 114 (11) ◽  
pp. 1629-1636 ◽  
Author(s):  
Shawn A. Stasko ◽  
Brian J. Hardin ◽  
Jeffrey D. Smith ◽  
Jennifer S. Moylan ◽  
Michael B. Reid

TNF promotes skeletal muscle weakness, in part, by depressing specific force of muscle fibers. This is a rapid, receptor-mediated response, in which TNF stimulates cellular oxidant production, causing myofilament dysfunction. The oxidants appear to include nitric oxide (NO); otherwise, the redox mechanisms that underlie this response remain undefined. The current study tested the hypotheses that 1) TNF signals via neuronal-type NO synthase (nNOS) to depress specific force, and 2) muscle-derived reactive oxygen species (ROS) are essential co-mediators of this response. Mouse diaphragm fiber bundles were studied using live cell assays. TNF exposure increased general oxidant activity ( P < 0.05; 2′,7′-dichlorodihydrofluorescein diacetate assay) and NO activity ( P < 0.05; 4-amino-5-methylamino-2′,7′-difluorofluorescein diacetate assay) and depressed specific force across the full range of stimulus frequencies (1-300 Hz; P < 0.05). These responses were abolished by pretreatment with Nω-nitro-L-arginine methyl ester (L-NAME; a nonspecific inhibitor of NOS activity), confirming NO involvement. Genetic nNOS deficiency replicated L-NAME effects on TNF-treated muscle, diminishing NO activity (−80%; P < 0.05) and preventing the decrement in specific force ( P < 0.05). Comparable protection was achieved by selective depletion of muscle-derived ROS. Pretreatment with either SOD (degrades superoxide anion) or catalase (degrades hydrogen peroxide) depressed oxidant activity in TNF-treated muscle and abolished the decrement in specific force. These findings indicate that TNF signals via nNOS to depress contractile function, a response that requires ROS and NO as obligate co-mediators.


2020 ◽  
Vol 16 ◽  
Author(s):  
Andrey Krylatov ◽  
Leonid Maslov ◽  
Sergey Y. Tsibulnikov ◽  
Nikita Voronkov ◽  
Alla Boshchenko ◽  
...  

: There is considerable evidence in the heart that autophagy in cardiomyocytes is activated by hypoxia/reoxygenation (H/R) or in hearts by ischemia/reperfusion (I/R). Depending upon the experimental model and duration of ischemia, increases in autophagy in this setting maybe beneficial (cardioprotective) or deleterious (exacerbate I/R injury). Aside from the conundrum as to whether or not autophagy is an adaptive process, it is clearly regulated by a number of diverse molecules including reactive oxygen species (ROS), various kinases, hydrogen sulfide (H2S) and nitric oxide (NO). The purpose this review is to address briefly the controversy regarding the role of autophagy in this setting and to examine a variety of disparate molecules that are involved in its regulation.


Nanoscale ◽  
2021 ◽  
Author(s):  
Rachael Knoblauch ◽  
Chris Geddes

While the utility of reactive oxygen species in photodynamic therapies for both cancer treatments and antimicrobial applications has received much attention, the inherent potential of reactive nitrogen species (RNS) including...


2014 ◽  
Vol 229 (12) ◽  
pp. 2015-2026 ◽  
Author(s):  
Shing-Chuan Shen ◽  
Ming-Shun Wu ◽  
Hui-Yi Lin ◽  
Liang-Yo Yang ◽  
Yi-Hsuan Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document