Hardware Failure in an Unconstrained Lumbar Pedicle Screw System

Spine ◽  
1999 ◽  
Vol 24 (11) ◽  
pp. 1138-1143 ◽  
Author(s):  
F. Todd Wetzel ◽  
Marshall Brustein ◽  
Frank M. Phillips ◽  
Suzanne Trott
2020 ◽  
Vol 32 (4) ◽  
pp. 542-547 ◽  
Author(s):  
Huan Liu ◽  
Junlong Wu ◽  
Yu Tang ◽  
Haiyin Li ◽  
Wenkai Wang ◽  
...  

OBJECTIVEThe authors aimed to assess, in a bone-agar experimental setting, the feasibility and accuracy of percutaneous lumbar pedicle screw placements using an intraoperative CT image–based augmented reality (AR)–guided method compared to placements using a radiograph-guided method. They also compared two AR hologram alignment methods.METHODSTwelve lumbar spine sawbones were completely embedded in hardened opaque agar, and a cubic marker was fixed on each phantom. After intraoperative CT, a 3D model of each phantom was generated, and a specialized application was deployed into an AR headset (Microsoft HoloLens). One hundred twenty pedicle screws, simulated by Kirschner wires (K-wires), were placed by two experienced surgeons, who each placed a total of 60 screws: 20 placed with a radiograph-guided technique, 20 with an AR technique in which the hologram was manually aligned, and 20 with an AR technique in which the hologram was automatically aligned. For each K-wire, the insertion path was expanded to a 6.5-mm diameter to simulate a lumbar pedicle screw. CT imaging of each phantom was performed after all K-wire placements, and the operative time required for each K-wire placement was recorded. An independent radiologist rated all images of K-wire placements. Outcomes were classified as grade I (no pedicle perforation), grade II (screw perforation of the cortex by up to 2 mm), or grade III (screw perforation of the cortex by > 2 mm). In a clinical situation, placements scored as grade I or II would be acceptable and safe for patients.RESULTSAmong all screw placements, 75 (94%) of 80 AR-guided placements and 40 (100%) of 40 radiograph-guided placements were acceptable (i.e., grade I or II; p = 0.106). Radiograph-guided placements had more grade I outcomes than the AR-guided method (p < 0.0001). The accuracy of the two AR alignment methods (p = 0.526) was not statistically significantly different, and neither was it different between the AR and radiograph groups (p < 0.0001). AR-guided placements required less time than the radiograph-guided placements (mean ± standard deviation, 131.76 ± 24.57 vs 181.43 ± 15.82 seconds, p < 0.0001). Placements performed using the automatic-alignment method required less time than those using the manual-alignment method (124.20 ± 23.80 vs 139.33 ± 23.21 seconds, p = 0.0081).CONCLUSIONSIn bone-agar experimental settings, AR-guided percutaneous lumbar pedicle screw placements were acceptable and more efficient than radiograph-guided placements. In a comparison of the two AR-guided placements, the automatic-alignment method was as accurate as the manual method but more efficient. Because of some limitations, the AR-guided system cannot be recommended in a clinical setting until there is significant improvement of this technology.


2021 ◽  
Vol 12 ◽  
pp. 518
Author(s):  
Mohamed M. Arnaout ◽  
Magdy O. ElSheikh ◽  
Mansour A. Makia

Background: Transpedicular screws are extensively utilized in lumbar spine surgery. The placement of these screws is typically guided by anatomical landmarks and intraoperative fluoroscopy. Here, we utilized 2-week postoperative computed tomography (CT) studies to confirm the accuracy/inaccuracy of lumbar pedicle screw placement in 145 patients and correlated these findings with clinical outcomes. Methods: Over 6 months, we prospectively evaluated the location of 612 pedicle screws placed in 145 patients undergoing instrumented lumbar fusions addressing diverse pathology with instability. Routine anteroposterior and lateral plain radiographs were obtained 48 h after the surgery, while CT scans were obtained at 2 postoperative weeks (i.e., ideally these should have been performed intraoperatively or within 24–48 h of surgery). Results: Of the 612 screws, minor misplacement of screws (≤2 mm) was seen in 104 patients, moderate misplacement in 34 patients (2–4 mm), and severe misplacement in 7 patients (>4 mm). Notably, all the latter 7 (4.8% of the 145) patients required repeated operative intervention. Conclusion: Transpedicular screw insertion in the lumbar spine carries the risks of pedicle medial/lateral violation that is best confirmed on CT rather than X-rays/fluoroscopy alone. Here, we additional found 7 patients (4.8%) who with severe medial/lateral pedicle breach who warranting repeated operative intervention. In the future, CT studies should be performed intraoperatively or within 24–48 h of surgery to confirm the location of pedicle screws and rule in our out medial or lateral pedicle breaches.


Neurosurgery ◽  
2000 ◽  
Vol 47 (2) ◽  
pp. 530-530 ◽  
Author(s):  
Kevin T. Foley ◽  
Ramesh L. Sahjpaul ◽  
Gerald R. Rodts

2018 ◽  
Vol 5 (1) ◽  
pp. 14
Author(s):  
John B. Pracyk ◽  
Nicole Ferko ◽  
Adrian P. Turner ◽  
Sara N. Root ◽  
Heather Cannon ◽  
...  

Guidewires (Kirschner or “K” wires) are often required during minimally invasive spine surgery to facilitate percutaneous pedicle screw placement. The use of guidewires involves a multi-step process that carries the risk of complications and their associated consequences. To date, the reporting of such information has been limited, and the literature has not been thoroughly evaluated. The objective of this study was to conduct a narrative review and assess the burden associated with guidewire use in spine surgeries. Databases searched included PubMed and Embase between the years of 1988 and 2017. In addition to databases, recent data from relevant trade journals were hand-searched. Inclusion criteria were broad to avoid potential exclusion of relevant publications. In total, 31 articles were included. This review found that the risk of complications associated with guidewire use in spine procedures ranged from 0.4% to 14.8%. Complication types included guidewire fracture, cerebrospinal fluid leakage, post-operative ileus, infection, and other spinal hardware failure (e.g., pedicle screw pull-out). Causes of complications typically included breakage and migration of the guidewire (metal fatigue), inexperience with guidewire use, or lack of tactile or visual feedback. Specific surgery types or patient populations may be more susceptible to guidewire-related complications (e.g., L5-S1 level operations). Complications associated with guidewire use may also lead to healthcare resource utilization, including additional operating time, radiation exposure, and re-operations. Solutions to help minimize the risk of such complications and associated consequences are required.


2007 ◽  
Vol 7 (3) ◽  
pp. 366-369 ◽  
Author(s):  
Patrick Fransen

✓Instrumented spinal fusion in patients with osteoporosis is challenging because of the poor bone quality and is complicated by an elevated risk of delayed hardware failure. The author treated two patients presenting with severe osteoporosis, spinal stenosis, and degenerative spondylolisthesis. He performed decompressive laminectomy, posterolateral fusion, and pedicle screw (PS) fixation involving screws with side openings that allow cement to be injected through the implant. The cement injection was conducted under fluoroscopic control without complications. Although this technique needs validation in a larger population of patients, the author believes that the injection of cement through these PSs can be performed safely in carefully selected patients. This technique creates not only a vertebroplasty-like effect that strengthens the vertebral body but also provides the additional stability afforded by the immediate anchoring of the screw, which may allow a shorter-length construct, save mobile segments, and finally reduce the risk of hardware failure.


2018 ◽  
Vol 140 (6) ◽  
Author(s):  
Shady S. Elmasry ◽  
Shihab S. Asfour ◽  
Francesco Travascio

Percutaneous pedicle screw fixation (PPSF) is a well-known minimally invasive surgery (MIS) employed in the treatment of thoracolumbar burst fractures (TBF). However, hardware failure and loss of angular correction are common limitations caused by the poor support of the anterior column of the spine. Balloon kyphoplasty (KP) is another MIS that was successfully used in the treatment of compression fractures by augmenting the injured vertebral body with cement. To overcome the limitations of stand-alone PPSF, it was suggested to augment PPSF with KP as a surgical treatment of TBF. Yet, little is known about the biomechanical alteration occurred to the spine after performing such procedure. The objective of this study was to evaluate and compare the immediate post-operative biomechanical performance of stand-alone PPSF, stand-alone-KP, and KP-augmented PPSF procedures. Novel three-dimensional (3D) finite element (FE) models of the thoracolumbar junction that describes the fractured spine and the three investigated procedures were developed and tested under mechanical loading conditions. The spinal stiffness, stresses at the implanted hardware, and the intradiscal pressure at the upper and lower segments were measured and compared. The results showed no major differences in the measured parameters between stand-alone PPSF and KP-augmented PPSF procedures, and demonstrated that the stand-alone KP may restore the stiffness of the intact spine. Accordingly, there was no immediate post-operative biomechanical advantage in augmenting PPSF with KP when compared to stand-alone PPSF, and fatigue testing may be required to evaluate the long-term biomechanical performance of such procedures.


Sign in / Sign up

Export Citation Format

Share Document