Transplantation of Mesenchymal Stem Cells in Experimental Peritoneal Fibrosis Induces Fibrogenic Protection.

2014 ◽  
Vol 98 ◽  
pp. 335
Author(s):  
A. Pires ◽  
F. Silva ◽  
I. Noronha
2013 ◽  
Vol 84 (2) ◽  
pp. 297-307 ◽  
Author(s):  
Toshinori Ueno ◽  
Ayumu Nakashima ◽  
Shigehiro Doi ◽  
Takeshi Kawamoto ◽  
Kiyomasa Honda ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Elerson C. Costalonga ◽  
Camilla Fanelli ◽  
Margoth R. Garnica ◽  
Irene L. Noronha

Peritoneal fibrosis (PF) represents a long-term complication of peritoneal dialysis (PD), affecting the peritoneal membrane (PM) function. Adipose tissue-derived mesenchymal stem cells (ASC) display immunomodulatory effects and may represent a strategy to block PF. The aim of this study was to analyze the effect of ASC in an experimental PF model developed in uremic rats. To mimic the clinical situation of patients on long-term PD, a combo model, characterized by the combination of PF and chronic kidney disease (CKD), was developed in Wistar rats. Rats were fed with a 0.75% adenine-containing diet, for 30 days, to induce CKD with uremia. PF was induced with intraperitoneal injections of chlorhexidine gluconate (CG) from day 15 to 30. 1×106 ASC were intravenously injected at days 15 and 21. Rats were divided into 5 groups: control, normal rats; CKD, rats receiving adenine diet; PF, rats receiving CG; CKD+PF, CKD rats with PF; CKD+PF+ASC, uremic rats with PF treated with ASC. PF was assessed by Masson trichrome staining. Inflammation- and fibrosis-associated factors were assessed by immunohistochemistry, multiplex analysis, and qPCR. When compared with the control and CKD groups, GC administration induced a striking increase in PM thickness and inflammation in the PF and CKD+PF groups. The development of PF was blocked by ASC treatment. Further, the upregulation of profibrotic factors (TGF-β, fibronectin, and collagen) and the increased myofibroblast expression observed in the CKD+PF group were significantly ameliorated by ASC. Beyond the antifibrotic effect, ASC showed an anti-inflammatory effect avoiding leucocyte infiltration and the overexpression of inflammatory cytokines (IL-1β, TNF-α, and IL-6) in the PM induced by GC. ASC were effective in preventing the development of PF in the experimental model of CKD+PF, probably due to their immunomodulatory properties. These results suggest that ASC may represent a potential strategy for treating long-term PD-associated fibrosis.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Chih-Yu Yang ◽  
Pu-Yuan Chang ◽  
Jun-Yi Chen ◽  
Bo-Sheng Wu ◽  
An-Hang Yang ◽  
...  

Abstract Background Life-long peritoneal dialysis (PD) as a renal replacement therapy is limited by peritoneal fibrosis. Previous studies showed immunomodulatory and antifibrotic effects of adipose-derived mesenchymal stem cells (ADSCs) on peritoneal fibrosis. However, the role of the peritoneal macrophage in this process remains uninvestigated. Methods We examined the therapeutic effects of ADSC and bone marrow-derived mesenchymal stem cells (BM-MSC) in the rat model of dialysis-induced peritoneal fibrosis using methylglyoxal. In addition, treatment of macrophages with the conditioned medium of ADSC and BM-MSC was performed individually to identify the beneficial component of the stem cell secretome. Results In the in vivo experiments, we found dialysis-induced rat peritoneal fibrosis was attenuated by both ADSC and BM-MSC. Interestingly, ADSC possessed a more prominent therapeutic effect than BM-MSC in ameliorating peritoneal membrane thickening while also upregulating epithelial cell markers in rat peritoneal tissues. The therapeutic effects of ADSC were positively associated with M2 macrophage polarization. In the in vitro experiments, we confirmed that interleukin-6 (IL-6) secreted by MSCs upon transforming growth factor-β1 stimulation promotes M2 macrophage polarization. Conclusions In dialysis-induced peritoneal fibrosis, MSCs are situated in an inflammatory environment of TGF-β1 and secrete IL-6 to polarize macrophages into the M2 phenotype. Our findings reveal a previously unidentified role of tissue macrophage in this antifibrotic process. ADSC has the advantage of abundance and accessibility, making the application values extremely promising. Graphical abstract In dialysis-induced peritoneal fibrosis, peritoneal mesothelial cells secrete transforming growth factor-β1 (TGF-β1) when exposed to methylglyoxal (MGO)-containing peritoneal dialysate. When situated in TGF-β1, the inflammatory environment induces mesenchymal stem cells to secrete interleukin-6 (IL-6), IL-6 polarizes macrophages into the M2 phenotype. The dominant peritoneal tissue M2 macrophages, marked by upregulated Arg-1 expression, account for the attenuation of MGO-induced dedifferentiation of peritoneal mesothelial cells to maintain epithelial integrity.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Kohei Nagasaki ◽  
Ayumu Nakashima ◽  
Ryo Tamura ◽  
Naoki Ishiuchi ◽  
Kiyomasa Honda ◽  
...  

AbstractBackgroundMesenchymal stem cells (MSCs) provide potential treatments for peritoneal fibrosis. However, MSCs cultured in media containing serum bring risks of infection and other problems. In this study, we compared the effect of human MSCs in serum-free medium (SF-MSCs) on peritoneal fibrosis with that of MSCs cultured in medium containing 10% fetal bovine serum (10%MSCs).MethodsPeritoneal fibrosis was induced by intraperitoneally injecting 0.1% chlorhexidine gluconate (CG). SF-MSCs or 10%MSCs were intraperitoneally administered 30 min after the CG injection. Ten days after the CG and MSC injections, we performed histological analyses and peritoneal equilibrium testing. In the in vitro experiments, we used transforming growth factor (TGF)-β1-stimulated human peritoneal mesothelial cells incubated in conditioned medium from MSCs to examine whether the SF-MSCs showed enhanced ability to produce antifibrotic humoral factors.ResultsHistological staining showed that the SF-MSCs significantly suppressed CG-induced cell accumulation and thickening compared with that of the 10%MSCs. Additionally, the SF-MSCs significantly inhibited mesenchymal cell expression, extracellular matrix protein deposition and inflammatory cell infiltration. Peritoneal equilibration testing showed that compared with administering 10%MSCs, administering SF-MSCs significantly reduced the functional impairments of the peritoneal membrane. The in vitro experiments showed that although the conditioned medium from MSCs suppressed TGF-β1 signaling, the suppression did not significantly differ between the SF-MSCs and 10%MSCs.ConclusionsSerum-free culture conditions can enhance the antifibrotic abilities of MSCs by suppressing inflammation. Administering ex vivo expanded SF-MSCs may be a potential therapy for preventing peritoneal fibrotic progression.


2010 ◽  
Vol 30 (6) ◽  
pp. 455-455 ◽  
Author(s):  
Dongyan Shi ◽  
Dan Ma ◽  
Feiqing Dong ◽  
Chen Zong ◽  
Liyue Liu ◽  
...  

2004 ◽  
Vol 171 (4S) ◽  
pp. 373-373
Author(s):  
Trinity J. Bivalacqua ◽  
Mustafa F. Usta ◽  
Hunter C. Champion ◽  
Weiwen Deng ◽  
Philip J. Kadowitz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document