IN VIVO PRODUCTION OF NITRIC OXIDE IN THE CANINE HEART IN IgE-MEDIATED ANAPHYLAXIS

Shock ◽  
1996 ◽  
Vol 6 (1) ◽  
pp. 66-70 ◽  
Author(s):  
Jin Saitoh ◽  
Hiromasa Mitsuhata ◽  
Haruhiko Takeuchi ◽  
Naoki Hasome ◽  
Reiju Shimizu
1999 ◽  
Vol 276 (6) ◽  
pp. H2069-H2075 ◽  
Author(s):  
Paul R. Forfia ◽  
Xiaoping Zhang ◽  
Delvin R. Knight ◽  
Andrew H. Smith ◽  
Christopher P. A. Doe ◽  
...  

Recent evidence from our laboratory and others suggests that nitric oxide (NO) is a modulator of in vivo and in vitro oxygen consumption in the murine and canine heart. Therefore, the goal of our study was twofold: to determine whether NO modulates myocardial oxygen consumption in the nonhuman primate heart in vitro and to evaluate whether the seemingly cardioprotective actions of amlodipine may involve an NO-mediated mechanism. Using a Clark-type O2 electrode, we measured oxygen consumption in cynomologous monkey heart at baseline and after increasing doses of S-nitroso- N-acetylpenicillamine (SNAP; 10−7–10−4M), bradykinin (10−7–10−4M), ramiprilat (10−7–10−4M), and amlodipine (10−7–10−5M). SNAP (−38 ± 5.8%), bradykinin (−19 ± 3.9%), ramiprilat (−28 ± 2.3%), and amlodipine (−23 ± 4.5%) each caused significant ( P < 0.05) reductions in myocardial oxygen consumption at their highest dose. Preincubation of tissue with nitro-l-arginine methyl ester (10−4 M) blunted the effects of bradykinin (−5.4 ± 3.2%), ramiprilat (−4.8 ± 5.0%), and amlodipine (−5.3 ± 5.0%) but had no effect on the tissue response to SNAP (−38 ± 5.8%). Our results indicate that NO can reduce oxygen consumption in the primate myocardium in vitro, and they support a role for the calcium-channel blocker amlodipine as a modulator of myocardial oxygen consumption via a kinin-NO mediated mechanism.


Circulation ◽  
1997 ◽  
Vol 95 (2) ◽  
pp. 415-422 ◽  
Author(s):  
Lawrence H. Young ◽  
Yin Renfu ◽  
Raymond Russell ◽  
Xiaoyue Hu ◽  
Michael Caplan ◽  
...  

Circulation ◽  
1995 ◽  
Vol 91 (5) ◽  
pp. 1314-1319 ◽  
Author(s):  
Robinson Joannides ◽  
Walter E. Haefeli ◽  
Lilly Linder ◽  
Vincent Richard ◽  
El Hassan Bakkali ◽  
...  
Keyword(s):  

Circulation ◽  
1995 ◽  
Vol 92 (7) ◽  
pp. 1876-1882 ◽  
Author(s):  
Alexander Mülsch ◽  
Peter Mordvintcev ◽  
Eberhard Bassenge ◽  
Frank Jung ◽  
Bernd Clement ◽  
...  

Circulation ◽  
1997 ◽  
Vol 96 (9) ◽  
pp. 3104-3111 ◽  
Author(s):  
Yoshihiro Fukumoto ◽  
Hiroaki Shimokawa ◽  
Toshiyuki Kozai ◽  
Toshiaki Kadokami ◽  
Kouichi Kuwata ◽  
...  

1994 ◽  
Vol 267 (2) ◽  
pp. H853-H863 ◽  
Author(s):  
L. L. Creswell ◽  
M. J. Moulton ◽  
S. G. Wyers ◽  
J. S. Pirolo ◽  
D. S. Fishman ◽  
...  

A new experimental method for the evaluation of myocardial constitutive models combines magnetic resonance (MR) radiofrequency (RF) tissue-tagging techniques with iterative two-dimensional (2-D) nonlinear finite element (FE) analysis. For demonstration, a nonlinear isotropic constitutive model for passive diastolic expansion in the in vivo canine heart is evaluated. A 2-D early diastolic FE mesh was constructed with loading parameters for the ventricular chambers taken from mean early diastolic-to-late diastolic pressure changes measured during MR imaging. FE solution was performed for regional, intramyocardial ventricular wall strains using small-strain, small-displacement theory. Corresponding regional ventricular wall strains were computed independently using MR images that incorporated RF tissue tagging. Two unknown parameters were determined for an exponential strain energy function that maximized agreement between observed (from MR) and predicted (from FE analysis) regional wall strains. Extension of this methodology will provide a framework in which to evaluate the quality of myocardial constitutive models of arbitrary complexity on a regional basis.


1996 ◽  
Vol 6 (S1) ◽  
pp. 272-272
Author(s):  
S. J. Wimalawansa ◽  
P. R. Gangula ◽  
G. De Marco ◽  
C. Yallampalli

Sign in / Sign up

Export Citation Format

Share Document