ROLE OF PROTEIN TYROSINE PHOSPHATASE IN MESENTERIC T CELL SUPPRESSION FOLLOWING BURN INJURY.

Shock ◽  
2001 ◽  
Vol 15 (Supplement) ◽  
pp. 13
Author(s):  
F. Haque ◽  
M. A. Choudhry ◽  
N. Fazal ◽  
R. L. Gamelli ◽  
M. M. Sayeed
2019 ◽  
Vol 58 (9) ◽  
pp. 1640-1647
Author(s):  
Liza D. Morales ◽  
Anna K. Archbold ◽  
Serena Olivarez ◽  
Thomas J. Slaga ◽  
John DiGiovanni ◽  
...  

2013 ◽  
Vol 34 (5) ◽  
pp. 888-899 ◽  
Author(s):  
Inmoo Rhee ◽  
Ming-Chao Zhong ◽  
Boris Reizis ◽  
Cheolho Cheong ◽  
André Veillette

Dendritic cells (DCs) capture and process antigens in peripheral tissues, migrate to lymphoid tissues, and present the antigens to T cells. PTPN12, also known as PTP-PEST, is an intracellular protein tyrosine phosphatase (PTP) involved in cell-cell and cell-substratum interactions. Herein, we examined the role of PTPN12 in DCs, using a genetically engineered mouse lacking PTPN12 in DCs. Our data indicated that PTPN12 was not necessary for DC differentiation, DC maturation, or cytokine production in response to inflammatory stimuli. However, it was needed for full induction of T cell-dependent immune responsesin vivo. This function largely correlated with the need of PTPN12 for DC migration from peripheral sites to secondary lymphoid tissues. Loss of PTPN12 in DCs resulted in hyperphosphorylation of the protein tyrosine kinase Pyk2 and its substrate, the adaptor paxillin. Pharmacological inhibition of Pyk2 or downregulation of Pyk2 expression also compromised DC migration, suggesting that Pyk2 deregulation played a pivotal role in the migration defect caused by PTPN12 deficiency. Together, these findings identified PTPN12 as a key regulator in the ability of DCs to induce antigen-induced T cell responses. This is due primarily to the role of PTPN12 in DC migration from peripheral sites to secondary lymphoid organs through regulation of Pyk2.


Shock ◽  
2002 ◽  
Vol 18 (3) ◽  
pp. 212-216 ◽  
Author(s):  
Mashkoor A. Choudhry ◽  
Haihong Mao ◽  
Farah Haque ◽  
Mehdi Khan ◽  
Nadeem Fazal ◽  
...  

2006 ◽  
Vol 17 (11) ◽  
pp. 4846-4855 ◽  
Author(s):  
Susann Karlsson ◽  
Katarzyna Kowanetz ◽  
Åsa Sandin ◽  
Camilla Persson ◽  
Arne Östman ◽  
...  

We have previously shown that the T-cell protein tyrosine phosphatase (TC-PTP) dephosphorylates the platelet-derived growth factor (PDGF) β-receptor. Here, we show that the increased PDGF β-receptor phosphorylation in TC-PTP knockout (ko) mouse embryonic fibroblasts (MEFs) occurs primarily on the cell surface. The increased phosphorylation is accompanied by a TC-PTP–dependent, monensin-sensitive delay in clearance of cell surface PDGF β-receptors and delayed receptor degradation, suggesting PDGF β-receptor recycling. Recycled receptors could also be directly detected on the cell surface of TC-PTP ko MEFs. The effect of TC-PTP depletion was specific for the PDGF β-receptor, because PDGF α-receptor homodimers were cleared from the cell surface at the same rate in TC-PTP ko MEFs as in wild-type MEFs. Interestingly, PDGF αβ-receptor heterodimers were recycling. Analysis by confocal microscopy revealed that, in TC-PTP ko MEFs, activated PDGF β-receptors colocalized with Rab4a, a marker for rapid recycling. In accordance with this, transient expression of a dominant-negative Rab4a construct increased the rate of clearance of cell surface receptors on TC-PTP ko MEFs. Thus, loss of TC-PTP specifically redirects the PDGF β-receptor toward rapid recycling, which is the first evidence of differential trafficking of PDGF receptor family members.


Sign in / Sign up

Export Citation Format

Share Document