Journal of Cell Communication and Signaling
Latest Publications


TOTAL DOCUMENTS

654
(FIVE YEARS 162)

H-INDEX

43
(FIVE YEARS 7)

Published By Springer-Verlag

1873-961x, 1873-9601

Author(s):  
Sima Zolfaghari ◽  
Ole Jørgen Kaasbøll ◽  
M. Shakil Ahmed ◽  
Fabian A. Line ◽  
Else Marie V. Hagelin ◽  
...  

AbstractCCN5 is a divergent member of the cellular communication network factor (CCN) family in that it lacks the carboxyl terminal cystine knot domain common to the other CCN family members. CCN5 has been reported to antagonize the profibrotic actions of CCN2 and to inhibit myocardial collagen deposition and fibrosis in chronic pressure overload of the heart. However, what mechanisms that regulate CCN5 activity in the heart remain unknown. Recombinant, replication defective adenovirus encoding firefly luciferase under control of the human CCN5 promoter was prepared and used to investigate what mechanisms regulate CCN5 transcription in relevant cells. Tissue distribution of CCN5 in hearts from healthy mice and from mice subjected to myocardial infarction was investigated. Contrary to the profibrotic immediate early gene CCN2, we find that CCN5 is induced in the late proliferation and maturation phases of scar healing. CCN5 was identified principally in endothelial cells, fibroblasts, smooth muscle cells, and macrophages. Our data show that CCN5 gene transcription and protein levels are induced by catecholamines via β2-adrenergic receptors. Myocardial induction of CCN5 was further confirmed in isoproterenol-infused mice. We also find that CCN5 transcription is repressed by TNF-α, an inflammatory mediator highly elevated in early phases of wound healing following myocardial infarction. In conclusion, CCN5 predominates in endothelial cells, fibroblasts, and macrophages of the differentiating scar tissue and its transcription is conversely regulated by β2-adrenergic agonists and TNF-α.


Author(s):  
Lennis Beatriz Orduña-Castillo ◽  
Jorge Eduardo del-Río-Robles ◽  
Irving García-Jiménez ◽  
César Zavala-Barrera ◽  
Yarely Mabell Beltrán-Navarro ◽  
...  

Author(s):  
Ashna Gauthaman ◽  
Rini Jacob ◽  
Sneha Pasupati ◽  
Abarna Rajadurai ◽  
C. George Priya Doss ◽  
...  

Author(s):  
Jennifer Gantchev ◽  
Brandon Ramchatesingh ◽  
Melissa Berman-Rosa ◽  
Daniel Sikorski ◽  
Keerthenan Raveendra ◽  
...  
Keyword(s):  

Author(s):  
Sukhbir Kaur ◽  
Alejandra Cavazos Saldana ◽  
Abdel G. Elkahloun ◽  
Jennifer D. Petersen ◽  
Anush Arakelyan ◽  
...  

AbstractCD47 is a marker of self and a signaling receptor for thrombospondin-1 that is also a component of extracellular vesicles (EVs) released by various cell types. Previous studies identified CD47-dependent functional effects of T cell EVs on target cells, mediated by delivery of their RNA contents, and enrichment of specific subsets of coding and noncoding RNAs in CD47+ EVs. Mass spectrometry was employed here to identify potential mechanisms by which CD47 regulates the trafficking of specific RNAs to EVs. Specific interactions of CD47 and its cytoplasmic adapter ubiquilin-1 with components of the exportin-1/Ran nuclear export complex were identified and confirmed by coimmunoprecipitation. Exportin-1 is known to regulate nuclear to cytoplasmic trafficking of 5’-7-methylguanosine (m7G)-modified microRNAs and mRNAs that interact with its cargo protein EIF4E. Interaction with CD47 was inhibited following alkylation of exportin-1 at Cys528 by its covalent inhibitor leptomycin B. Leptomycin B increased levels of m7G-modified RNAs, and their association with exportin-1 in EVs released from wild type but not CD47-deficient cells. In addition to perturbing nuclear to cytoplasmic transport, transcriptomic analyses of EVs released by wild type and CD47-deficient Jurkat T cells revealed a global CD47-dependent enrichment of m7G-modified microRNAs and mRNAs in EVs released by CD47-deficient cells. Correspondingly, decreasing CD47 expression in wild type cells or treatment with thrombospondin-1 enhanced levels of specific m7G-modified RNAs released in EVs, and re-expressing CD47 in CD47-deficient T cells decreased their levels. Therefore, CD47 signaling limits the trafficking of m7G-modified RNAs to EVs through physical interactions with the exportin-1/Ran transport complex.


Sign in / Sign up

Export Citation Format

Share Document