MURINE IGE AND IGG ANTIBODY RESPONSES TO SHRIMP, AND NATURAL AND RECOMBINANT PEN A 1: CROSS REACTIVITY WITH CRUSTACEANS.

2004 ◽  
Vol 52 ◽  
pp. S305-S306
Author(s):  
L I Ree-Kim ◽  
P Gaudry ◽  
G Reese ◽  
S B Lehrer
1998 ◽  
Vol 72 (3) ◽  
pp. 187-191 ◽  
Author(s):  
T. Ikeda

AbstractIgG and IgM antibody responses to fluke cysteine proteinases in Paragonimus ohirai- and Fasciola sp.-infected rats were followed by means of cystatin capture ELISA using fluke excretory-secretory products for 10 weeks after infection. The specific IgG antibodies were detectable at week 2 postinfection in all P. ohirai-infected and some Fasciola-infected rats. Levels of specific IgG antibodies increased rapidly between week 2 and 6, and slightly thereafter, in both infected groups. From week 3, specific IgG antibody levels were higher in Fasciola-infected than P. ohirai-infected rats. Sera from infected rats did not react with heterologous cysteine proteinases throughout the infection periods. In both infected groups, the kinetic patterns of specific IgM antibody responses were similar to those of specific IgG antibody responses although the ELISA levels of the IgM antibody responses were much lower. In abnormal infections with P. ohirai metacercariae x-irradiated at 2 krad, the specific IgG antibodies were detectable at week 2 postinfection with similar ELISA values to normal P. ohirai infection, but thereafter increased little. In infections with P. westermani, for which the rat is not a suitable host, even stunted worms induced a comparable specific IgG antibody response, although the response was lower than in normal infections with P. ohirai. These results indicate that cystatin capture ELISA can distinguish clearly between Paragonimus and Fasciola infections which show immunodiagnostic cross-reactivity and is useful even in the early stages of the infection and in the infection of unsuitable hosts.


Infection ◽  
2021 ◽  
Author(s):  
Ali Hamady ◽  
JinJu Lee ◽  
Zuzanna A. Loboda

Abstract Objectives The coronavirus disease 2019 (COVID-19), caused by the novel betacoronavirus severe acute respiratory syndrome 2 (SARS-CoV-2), was declared a pandemic in March 2020. Due to the continuing surge in incidence and mortality globally, determining whether protective, long-term immunity develops after initial infection or vaccination has become critical. Methods/Results In this narrative review, we evaluate the latest understanding of antibody-mediated immunity to SARS-CoV-2 and to other coronaviruses (SARS-CoV, Middle East respiratory syndrome coronavirus and the four endemic human coronaviruses) in order to predict the consequences of antibody waning on long-term immunity against SARS-CoV-2. We summarise their antibody dynamics, including the potential effects of cross-reactivity and antibody waning on vaccination and other public health strategies. At present, based on our comparison with other coronaviruses we estimate that natural antibody-mediated protection for SARS-CoV-2 is likely to last for 1–2 years and therefore, if vaccine-induced antibodies follow a similar course, booster doses may be required. However, other factors such as memory B- and T-cells and new viral strains will also affect the duration of both natural and vaccine-mediated immunity. Conclusion Overall, antibody titres required for protection are yet to be established and inaccuracies of serological methods may be affecting this. We expect that with standardisation of serological testing and studies with longer follow-up, the implications of antibody waning will become clearer.


Allergy ◽  
1989 ◽  
Vol 44 (6) ◽  
pp. 380-384 ◽  
Author(s):  
S. L. NORDVALL ◽  
B. RENCK ◽  
R. EINARSSON

PLoS ONE ◽  
2016 ◽  
Vol 11 (2) ◽  
pp. e0149581 ◽  
Author(s):  
Gustavo C. Cassiano ◽  
Adriana A. C. Furini ◽  
Marcela P. Capobianco ◽  
Luciane M. Storti-Melo ◽  
Maristela G. Cunha ◽  
...  

Allergy ◽  
2011 ◽  
Vol 66 (12) ◽  
pp. 1513-1521 ◽  
Author(s):  
B. A. Sin ◽  
M. Akdis ◽  
J. Zumkehr ◽  
S. Bezzine ◽  
C. Bekpen ◽  
...  

Vaccines ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 964
Author(s):  
Kelsey A. Pilewski ◽  
Kevin J. Kramer ◽  
Ivelin S. Georgiev

Vaccination remains one of the most successful medical interventions in history, significantly decreasing morbidity and mortality associated with, or even eradicating, numerous infectious diseases. Although traditional immunization strategies have recently proven insufficient in the face of many highly mutable and emerging pathogens, modern strategies aim to rationally engineer a single antigen or cocktail of antigens to generate a focused, protective immune response. However, the effect of cocktail vaccination (simultaneous immunization with multiple immunogens) on the antibody response to each individual antigen within the combination, remains largely unstudied. To investigate whether immunization with a cocktail of diverse antigens would result in decreased antibody titer against each unique antigen in the cocktail compared to immunization with each antigen alone, we immunized mice with surface proteins from uropathogenic Escherichia coli, Mycobacterium tuberculosis, and Neisseria meningitides, and monitored the development of antigen-specific IgG antibody responses. We found that antigen-specific endpoint antibody titers were comparable across immunization groups by study conclusion (day 70). Further, we discovered that although cocktail-immunized mice initially elicited more robust antibody responses, the rate of titer development decreases significantly over time compared to single antigen-immunized mice. Investigating the basic properties that govern the development of antigen-specific antibody responses will help inform the design of future combination immunization regimens.


Sign in / Sign up

Export Citation Format

Share Document