INTRACRANIAL PRESSURE CHANGES IN NEUROSURGICAL PATIENTS DURING HYPOTENSION INDUCED WITH SODIUM NITROPRUSSIDE OR TRIMETHAPHAN

1978 ◽  
Vol 22 (3) ◽  
pp. 254
Author(s):  
J. M. TURNER ◽  
D. POWELL ◽  
R. M. GIBSON ◽  
D. G. MCDOWALL
1978 ◽  
Vol 48 (3) ◽  
pp. 329-331 ◽  
Author(s):  
James E. Cottrell ◽  
Katie Patel ◽  
Herman Turndorf ◽  
Joseph Ransohoff

✓ Because of the ability of sodium nitroprusside (SNP) to dilate cerebral blood vessels, intracranial pressure (ICP) should increase with its use. In patients with vascular intracranial tumors following SNP (0.01%) infusion, ICP increased from 14.58 ± 1.85 to 27.61 ± 3.33 torr (p > 0.0005) and cerebral perfusion pressure decreased from 89.32 ± 3.5 to 43.23 ± 4.60 torr (p < 0.0005) when the mean arterial pressure had reduced by 33%. These results suggest that SNP not be used in patients with raised ICP unless previous measures have been taken to improve intracranial compliance.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
A. Harrois ◽  
◽  
J. R. Anstey ◽  
F. S. Taccone ◽  
A. A. Udy ◽  
...  

Following publication of the original article [1], we were notified that the collaborators’ names part of the “The TBI Collaborative” group has not been indexed in Pubmed. Below the collaborators names full list:


1983 ◽  
Vol 9 (6) ◽  
pp. 321-323 ◽  
Author(s):  
Y. M. Bertrand ◽  
A. Hermant ◽  
P. Mahieu ◽  
J. Roels

1981 ◽  
Vol 58 (3-4) ◽  
pp. 203-211 ◽  
Author(s):  
C. Anile ◽  
F. Zanghi ◽  
A. Bracali ◽  
G. Maira ◽  
G. F. Rossi

1998 ◽  
Vol 274 (5) ◽  
pp. H1715-H1728 ◽  
Author(s):  
Mauro Ursino ◽  
Carlo Alberto Lodi

The relationships among cerebral blood flow, cerebral blood volume, intracranial pressure (ICP), and the action of cerebrovascular regulatory mechanisms (autoregulation and CO2 reactivity) were investigated by means of a mathematical model. The model incorporates the cerebrospinal fluid (CSF) circulation, the intracranial pressure-volume relationship, and cerebral hemodynamics. The latter is based on the following main assumptions: the middle cerebral arteries behave passively following transmural pressure changes; the pial arterial circulation includes two segments (large and small pial arteries) subject to different autoregulation mechanisms; and the venous cerebrovascular bed behaves as a Starling resistor. A new aspect of the model exists in the description of CO2 reactivity in the pial arterial circulation and in the analysis of its nonlinear interaction with autoregulation. Simulation results, obtained at constant ICP using various combinations of mean arterial pressure and CO2 pressure, substantially support data on cerebral blood flow and velocity reported in the physiological literature concerning both the separate effects of CO2 and autoregulation and their nonlinear interaction. Simulations performed in dynamic conditions with varying ICP underline the existence of a significant correlation between ICP dynamics and cerebral hemodynamics in response to CO2 changes. This correlation may significantly increase in pathological subjects with poor intracranial compliance and reduced CSF outflow. In perspective, the model can be used to study ICP and blood velocity time patterns in neurosurgical patients in order to gain a deeper insight into the pathophysiological mechanisms leading to intracranial hypertension and secondary brain damage.


Sign in / Sign up

Export Citation Format

Share Document