scholarly journals Wildfire smoke may interfere with the use of black carbon as an indicator of traffic exposure

2019 ◽  
Vol 3 ◽  
pp. 261
Author(s):  
Martenies S ◽  
WeMott S ◽  
Kuiper G ◽  
Lorber K ◽  
Dawson C ◽  
...  
2019 ◽  
Vol 19 (6) ◽  
pp. 3905-3926 ◽  
Author(s):  
Vanessa Selimovic ◽  
Robert J. Yokelson ◽  
Gavin R. McMeeking ◽  
Sarah Coefield

Abstract. In mid-August through mid-September of 2017 a major wildfire smoke and haze episode strongly impacted most of the NW US and SW Canada. During this period our ground-based site in Missoula, Montana, experienced heavy smoke impacts for ∼ 500 h (up to 471 µg m−3 hourly average PM2.5). We measured wildfire trace gases, PM2.5 (particulate matter ≤2.5 µm in diameter), and black carbon and submicron aerosol scattering and absorption at 870 and 401 nm. This may be the most extensive real-time data for these wildfire smoke properties to date. Our range of trace gas ratios for ΔNH3∕ΔCO and ΔC2H4∕ΔCO confirmed that the smoke from mixed, multiple sources varied in age from ∼ 2–3 h to ∼ 1–2 days. Our study-average ΔCH4∕ΔCO ratio (0.166±0.088) indicated a large contribution to the regional burden from inefficient smoldering combustion. Our ΔBC∕ΔCO ratio (0.0012±0.0005) for our ground site was moderately lower than observed in aircraft studies (∼ 0.0015) to date, also consistent with a relatively larger contribution from smoldering combustion. Our ΔBC∕ΔPM2.5 ratio (0.0095±0.0003) was consistent with the overwhelmingly non-BC (black carbon), mostly organic nature of the smoke observed in airborne studies of wildfire smoke to date. Smoldering combustion is usually associated with enhanced PM emissions, but our ΔPM2.5∕ΔCO ratio (0.126±0.002) was about half the ΔPM1.0∕ΔCO measured in fresh wildfire smoke from aircraft (∼ 0.266). Assuming PM2.5 is dominated by PM1, this suggests that aerosol evaporation, at least near the surface, can often reduce PM loading and its atmospheric/air-quality impacts on the timescale of several days. Much of the smoke was emitted late in the day, suggesting that nighttime processing would be important in the early evolution of smoke. The diurnal trends show brown carbon (BrC), PM2.5, and CO peaking in the early morning and BC peaking in the early evening. Over the course of 1 month, the average single scattering albedo for individual smoke peaks at 870 nm increased from ∼ 0.9 to ∼ 0.96. Bscat401∕Bscat870 was used as a proxy for the size and “photochemical age” of the smoke particles, with this interpretation being supported by the simultaneously observed ratios of reactive trace gases to CO. The size and age proxy implied that the Ångström absorption exponent decreased significantly after about 10 h of daytime smoke aging, consistent with the only airborne measurement of the BrC lifetime in an isolated plume. However, our results clearly show that non-BC absorption can be important in “typical” regional haze and moderately aged smoke, with BrC ostensibly accounting for about half the absorption at 401 nm on average for our entire data set.


2018 ◽  
Vol 123 (10) ◽  
pp. 5376-5396 ◽  
Author(s):  
O. V. Kalashnikova ◽  
M. J. Garay ◽  
K. H. Bates ◽  
C. M. Kenseth ◽  
W. Kong ◽  
...  

2015 ◽  
Vol 74 ◽  
pp. 89-98 ◽  
Author(s):  
Luc Dekoninck ◽  
Dick Botteldooren ◽  
Luc Int Panis ◽  
Steve Hankey ◽  
Grishma Jain ◽  
...  

Science ◽  
2019 ◽  
Vol 365 (6453) ◽  
pp. 587-590 ◽  
Author(s):  
Pengfei Yu ◽  
Owen B. Toon ◽  
Charles G. Bardeen ◽  
Yunqian Zhu ◽  
Karen H. Rosenlof ◽  
...  

In 2017, western Canadian wildfires injected smoke into the stratosphere that was detectable by satellites for more than 8 months. The smoke plume rose from 12 to 23 kilometers within 2 months owing to solar heating of black carbon, extending the lifetime and latitudinal spread. Comparisons of model simulations to the rate of observed lofting indicate that 2% of the smoke mass was black carbon. The observed smoke lifetime in the stratosphere was 40% shorter than calculated with a standard model that does not consider photochemical loss of organic carbon. Photochemistry is represented by using an empirical ozone-organics reaction probability that matches the observed smoke decay. The observed rapid plume rise, latitudinal spread, and photochemical reactions provide new insights into potential global climate impacts from nuclear war.


2016 ◽  
Vol 15 (4) ◽  
pp. 329-336 ◽  
Author(s):  
Gihoon Kim ◽  
◽  
Seongmin Jo ◽  
Hohyun Kim ◽  
Seungdo Yu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document