smoldering combustion
Recently Published Documents


TOTAL DOCUMENTS

152
(FIVE YEARS 30)

H-INDEX

23
(FIVE YEARS 3)

2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Yong Ho Kim ◽  
Sarah H. Warren ◽  
Ingeborg Kooter ◽  
Wanda C. Williams ◽  
Ingrid J. George ◽  
...  

Abstract Background Open burning of anthropogenic sources can release hazardous emissions and has been associated with increased prevalence of cardiopulmonary health outcomes. Exposure to smoke emitted from burn pits in military bases has been linked with respiratory illness among military and civilian personnel returning from war zones. Although the composition of the materials being burned is well studied, the resulting chemistry and potential toxicity of the emissions are not. Methods Smoke emission condensates from either flaming or smoldering combustion of five different types of burn pit-related waste: cardboard; plywood; plastic; mixture; and mixture/diesel, were obtained from a laboratory-scale furnace coupled to a multistage cryotrap system. The primary emissions and smoke condensates were analyzed for a standardized suite of chemical species, and the condensates were studied for pulmonary toxicity in female CD-1 mice and mutagenic activity in Salmonella (Ames) mutagenicity assay using the frameshift strain TA98 and the base-substitution strain TA100 with and without metabolic activation (S9 from rat liver). Results Most of the particles in the smoke emitted from flaming and smoldering combustion were less than 2.5 µm in diameter. Burning of plastic containing wastes (plastic, mixture, or mixture/diesel) emitted larger amounts of particulate matter (PM) compared to other types of waste. On an equal mass basis, the smoke PM from flaming combustion of plastic containing wastes caused more inflammation and lung injury and was more mutagenic than other samples, and the biological responses were associated with elevated polycyclic aromatic hydrocarbon levels. Conclusions This study suggests that adverse health effects of burn pit smoke exposure vary depending on waste type and combustion temperature; however, burning plastic at high temperature was the most significant contributor to the toxicity outcomes. These findings will provide a better understanding of the complex chemical and combustion temperature factors that determine toxicity of burn pit smoke and its potential health risks at military bases.


2021 ◽  
Vol 21 (2) ◽  
pp. 597-616
Author(s):  
Ivar R. van der Velde ◽  
Guido R. van der Werf ◽  
Sander Houweling ◽  
Henk J. Eskes ◽  
J. Pepijn Veefkind ◽  
...  

Abstract. The global fire emission inventories depend on ground and airborne measurements of species-specific emission factors (EFs), which translate dry matter losses due to fires to actual trace gas and aerosol emissions. The EFs of nitrogen oxides (NOx) and carbon monoxide (CO) can function as a proxy for combustion efficiency to distinguish flaming from smoldering combustion. The uncertainties in these EFs remain large as they are limited by the spatial and temporal representativeness of the measurements. The global coverage of satellite observations has the advantage of filling this gap, making these measurements highly complementary to ground-based or airborne data. We present a new analysis of biomass burning pollutants using space-borne data to investigate the spatiotemporal efficiency of fire combustion. Column measurements of nitrogen dioxide and carbon monoxide (XNO2 and XCO) from the TROPOspheric Monitoring Instrument (TROPOMI) are used to quantify the relative atmospheric enhancements of these species over different fire-prone regions around the world. We find spatial and temporal patterns in the ΔXNO2 ∕ ΔXCO ratio that point to distinct differences in biomass burning behavior. Such differences are induced by the burning phase of the fire (e.g., high-temperature flaming vs. low-temperature smoldering combustion) and burning practice (e.g., the combustion of logs, coarse woody debris and soil organic matter vs. the combustion of fine fuels such as savanna grasses). The sampling techniques and the signal-to-noise ratio of the retrieved ΔXNO2 ∕ ΔXCO signals were quantified with WRF-Chem experiments and showed similar distinct differences in combustion types. The TROPOMI measurements show that the fraction of surface smoldering combustion is much larger for the boreal forest fires in the upper Northern Hemisphere and peatland fires in Indonesia. These types of fires cause a much larger increase (3 to 6 times) in ΔXCO relative to ΔXNO2 than elsewhere in the world. The high spatial and temporal resolution of TROPOMI also enables the detection of spatial gradients in combustion efficiency at smaller regional scales. For instance, in the Amazon, we found higher combustion efficiency (up to 3-fold) for savanna fires than for the nearby tropical deforestation fires. Out of two investigated fire emission products, the TROPOMI measurements support the broad spatial pattern of combustion efficiency rooted in GFED4s. Meanwhile, TROPOMI data also add new insights into regional variability in combustion characteristics that are not well represented in the different emission inventories, which can help the fire modeling community to improve their representation of the spatiotemporal variability in EFs.


2021 ◽  
Vol 41 (8) ◽  
Author(s):  
尹赛男,杜帅,单延龙,高博,王明霞,韩喜越,张昊 YIN Sainan

ACS Omega ◽  
2020 ◽  
Vol 5 (51) ◽  
pp. 33445-33454
Author(s):  
Shan Cheng ◽  
Xiangpeng Gao ◽  
Liwen Cao ◽  
Quanbin Wang ◽  
Yu Qiao

2020 ◽  
pp. 124995
Author(s):  
Cheng Zhao ◽  
Yuzhong Li ◽  
Zongwei Gan ◽  
Maofeng Nie

Sign in / Sign up

Export Citation Format

Share Document