Black carbon, particulate mass and non-volatile particle number emissions from marine transport in comparison to road transport and consideration of uncertainty

Author(s):  
Päivi Aakko-Saksa ◽  
Kati Lehtoranta ◽  
Niina Kuittinen ◽  
Timo Murtonen ◽  
Hannu Vesala ◽  
...  
2015 ◽  
Vol 49 (3) ◽  
pp. 152-158 ◽  
Author(s):  
Matthew Dickau ◽  
Tyler J. Johnson ◽  
Kevin Thomson ◽  
Greg Smallwood ◽  
Jason S. Olfert

2020 ◽  
Vol 20 (11) ◽  
pp. 7049-7068 ◽  
Author(s):  
Jia Sun ◽  
Wolfram Birmili ◽  
Markus Hermann ◽  
Thomas Tuch ◽  
Kay Weinhold ◽  
...  

Abstract. Anthropogenic emissions are dominant contributors to air pollution. Consequently, mitigation policies have been attempted since the 1990s in Europe to reduce pollution by anthropogenic emissions. To evaluate the effectiveness of these mitigation policies, the German Ultrafine Aerosol Network (GUAN) was established in 2008, focusing on black carbon (BC) and sub-micrometre aerosol particles. In this study, long-term trends of atmospheric particle number concentrations (PNCs) and equivalent BC (eBC) mass concentration over a 10-year period (2009–2018) were determined for 16 GUAN sites ranging from roadside to high Alpine environments. Overall, statistically significant decreasing trends are found for most of these parameters and environments in Germany. The annual relative slope of eBC mass concentration varies between −13.1 % and −1.7 % per year. The slopes of the PNCs vary from −17.2 % to −1.7 %, −7.8 % to −1.1 %, and −11.1 % to −1.2 % per year for 10–30, 30–200, and 200–800 nm size ranges, respectively. The reductions in various anthropogenic emissions are found to be the dominant factors responsible for the decreasing trends of eBC mass concentration and PNCs. The diurnal and seasonal variations in the trends clearly show the effects of the mitigation policies for road transport and residential emissions. The influences of other factors such as air masses, precipitation, and temperature were also examined and found to be less important or negligible. This study proves that a combination of emission mitigation policies can effectively improve the air quality on large spatial scales. It also suggests that a long-term aerosol measurement network at multi-type sites is an efficient and necessary tool for evaluating emission mitigation policies.


Atmosphere ◽  
2019 ◽  
Vol 10 (8) ◽  
pp. 439 ◽  
Author(s):  
Onat ◽  
Şahin ◽  
Uzun ◽  
Akın ◽  
Özkaya ◽  
...  

This paper presents measurements and analyses of the concentrations of black carbon (BC), particle number concentration (PNC), and PM2.5 (≤2.5 μm) while commuting by ferries in Istanbul. In this context, exposures to the mentioned pollutants were estimated for car ferry, fast ferry, and at the piers, and for two travel routes, for a total of 89 trips. BC, PNC, and PM2.5 measurements were simultaneously performed in a ferry and at the piers, and the correlation between pollutant concentrations, meteorological parameters, and environmental factors were analyzed. The mean concentrations for all pollutants in car ferry were lower than the average concentrations in fast ferry. The concentration ratios of fast ferry to car ferry for BC, PNC, and PM2.5 were 6.4, 1.2, and 1.3, respectively. High variability in the concentrations was observed at the piers and in ferry during berthing. The highest mean concentrations (±standard deviation) of BC (14.3 ± 10.1 µg m−3) and PNC (42,005 ± 30,899 pt cm−3) were measured at Yalova pier. The highest mean concentration (±standard deviation) of PM2.5 (26.1 ± 11.5) was measured at Bostancı pier. It was observed that the main external sources of BC, PNC, and PM2.5 at the piers were road transport, residential heating, and shipping activity. There were no significant correlations between BC, PNC, and PM2.5 in fast ferry, while BC was positively correlated with PNC (r = 0.61, p < 0.01) and PM2.5 (r = 0.76, p < 0.01) in car ferry. At the piers, significant relations between pollutants and meteorological variables were observed. It was noticed that there was no significant difference between summer and winter in ferry and at the pier concentrations of BC, PNC, and PM2.5 except for Yenikapı pier and Bakırköy pier. The highest total exposure to PNC and PM2.5 was in car ferry mode, while the highest total exposure to BC was in fast ferry mode.


2015 ◽  
Vol 8 (6) ◽  
pp. 6355-6393 ◽  
Author(s):  
G. I. Gkatzelis ◽  
D. K. Papanastasiou ◽  
K. Florou ◽  
C. Kaltsonoudis ◽  
E. Louvaris ◽  
...  

Abstract. An experimental methodology was developed to measure the non-volatile particle number concentration using a thermodenuder (TD). The TD was coupled with a high-resolution time-of-flight aerosol mass spectrometer, measuring the chemical composition and mass size distribution of the submicrometer aerosol and a scanning mobility particle sizer (SMPS) that provided the number size distribution of the aerosol in the range from 10 to 500 nm. The method was evaluated with a set of smog chamber experiments and achieved almost complete evaporation (> 98 %) of secondary organic as well as freshly nucleated particles, using a TD temperature of 400 °C and a centerline residence time of 15 s. This experimental approach was applied in a winter field campaign in Athens and provided a direct measurement of number concentration and size distribution for particles emitted from major pollution sources. During periods in which the contribution of biomass burning sources was dominant, more than 80 % of particle number concentration remained after passing through the thermodenuder, suggesting that nearly all biomass burning particles had a non-volatile core. These remaining particles consisted mostly of black carbon (60 % mass contribution) and organic aerosol, OA (40 %). Organics that had not evaporated through the TD were mostly biomass burning OA (BBOA) and oxygenated OA (OOA) as determined from AMS source apportionment analysis. For periods during which traffic contribution was dominant 50–60 % of the particles had a non-volatile core while the rest evaporated at 400 °C. The remaining particle mass consisted mostly of black carbon (BC) with an 80 % contribution, while OA was responsible for another 15–20 %. Organics were mostly hydrocarbon-like OA (HOA) and OOA. These results suggest that even at 400 °C some fraction of the OA does not evaporate from particles emitted from common combustion processes, such as biomass burning and car engines, indicating that a fraction of this type of OA is of extremely low volatility.


2015 ◽  
Vol 8 (1) ◽  
pp. 43-55 ◽  
Author(s):  
I. Ježek ◽  
L. Drinovec ◽  
L. Ferrero ◽  
M. Carriero ◽  
G. Močnik

Abstract. We have used two methods for measuring emission factors (EFs) in real driving conditions on five cars in a controlled environment: the stationary method, where the investigated vehicle drives by the stationary measurement platform and the composition of the plume is measured, and the chasing method, where a mobile measurement platform drives behind the investigated vehicle. We measured EFs of black carbon and particle number concentration. The stationary method was tested for repeatability at different speeds and on a slope. The chasing method was tested on a test track and compared to the portable emission measurement system. We further developed the data processing algorithm for both methods, trying to improve consistency, determine the plume duration, limit the background influence and facilitate automatic processing of measurements. The comparison of emission factors determined by the two methods showed good agreement. EFs of a single car measured with either method have a specific distribution with a characteristic value and a long tail of super emissions. Measuring EFs at different speeds or slopes did not significantly influence the EFs of different cars; hence, we propose a new description of vehicle emissions that is not related to kinematic or engine parameters, and we rather describe the vehicle EF with a characteristic value and a super emission tail.


2015 ◽  
Vol 8 (3) ◽  
pp. 2881-2912 ◽  
Author(s):  
J. M. Wang ◽  
C.-H. Jeong ◽  
N. Zimmerman ◽  
R. M. Healy ◽  
D. K. Wang ◽  
...  

Abstract. An automated identification and integration method has been developed to investigate in-use vehicle emissions under real-world conditions. This technique was applied to high time resolution air pollutant measurements of in-use vehicle emissions performed under real-world conditions at a near-road monitoring station in Toronto, Canada during four seasons, through month-long campaigns in 2013–2014. Based on carbon dioxide measurements, over 100 000 vehicle-related plumes were automatically identified and fuel-based emission factors for nitrogen oxides; carbon monoxide; particle number, black carbon; benzene, toluene, ethylbenzene, and xylenes (BTEX); and methanol were determined for each plume. Thus the automated identification enabled the measurement of an unprecedented number of plumes and pollutants over an extended duration. Emission factors for volatile organic compounds were also measured roadside for the first time using a proton transfer reaction time-of-flight mass spectrometer; this instrument provided the time resolution required for the plume capture technique. Mean emission factors were characteristic of the light-duty gasoline dominated vehicle fleet present at the measurement site, with mean black carbon and particle number emission factors of 35 mg kg−1 and 7.7 × 1014 kg−1, respectively. The use of the plume-by-plume analysis enabled isolation of vehicle emissions, and the elucidation of co-emitted pollutants from similar vehicle types, variability of emissions across the fleet, and the relative contribution from heavy emitters. It was found that a small proportion of the fleet (< 25%) contributed significantly to total fleet emissions; 95, 93, 76, and 75% for black carbon, carbon monoxide, BTEX, and particle number, respectively. Emission factors of a single pollutant may help classify a vehicle as a high emitter. However, regulatory strategies to more efficiently target multi-pollutants mixtures may be better developed by considering the co-emitted pollutants as well.


2016 ◽  
Vol 9 (1) ◽  
pp. 103-114 ◽  
Author(s):  
G. I. Gkatzelis ◽  
D. K. Papanastasiou ◽  
K. Florou ◽  
C. Kaltsonoudis ◽  
E. Louvaris ◽  
...  

Abstract. An experimental methodology was developed to measure the nonvolatile particle number concentration using a thermodenuder (TD). The TD was coupled with a high-resolution time-of-flight aerosol mass spectrometer, measuring the chemical composition and mass size distribution of the submicrometer aerosol and a scanning mobility particle sizer (SMPS) that provided the number size distribution of the aerosol in the range from 10 to 500 nm. The method was evaluated with a set of smog chamber experiments and achieved almost complete evaporation (> 98 %) of secondary organic as well as freshly nucleated particles, using a TD temperature of 400 °C and a centerline residence time of 15 s. This experimental approach was applied in a winter field campaign in Athens and provided a direct measurement of number concentration and size distribution for particles emitted from major pollution sources. During periods in which the contribution of biomass burning sources was dominant, more than 80 % of particle number concentration remained after passing through the thermodenuder, suggesting that nearly all biomass burning particles had a nonvolatile core. These remaining particles consisted mostly of black carbon (60 % mass contribution) and organic aerosol (OA; 40 %). Organics that had not evaporated through the TD were mostly biomass burning OA (BBOA) and oxygenated OA (OOA) as determined from AMS source apportionment analysis. For periods during which traffic contribution was dominant 50–60 % of the particles had a nonvolatile core while the rest evaporated at 400 °C. The remaining particle mass consisted mostly of black carbon with an 80 % contribution, while OA was responsible for another 15–20 %. Organics were mostly hydrocarbon-like OA (HOA) and OOA. These results suggest that even at 400 °C some fraction of the OA does not evaporate from particles emitted from common combustion processes, such as biomass burning and car engines, indicating that a fraction of this type of OA is of extremely low volatility.


Hypertension ◽  
2021 ◽  
Vol 77 (3) ◽  
pp. 823-832
Author(s):  
Neelakshi Hudda ◽  
Misha Eliasziw ◽  
Scott O. Hersey ◽  
Ellin Reisner ◽  
Robert D. Brook ◽  
...  

Exposure to traffic-related air pollution (TRAP) may contribute to increased prevalence of hypertension and elevated blood pressure (BP) for residents of near-highway neighborhoods. Relatively few studies have investigated the effects of reducing TRAP exposure on short-term changes in BP. We assessed whether reducing indoor TRAP concentrations by using stand-alone high-efficiency particulate arrestance (HEPA) filters and limiting infiltration through doors and windows effectively prevented acute (ie, over a span of hours) increases in BP. Using a 3-period crossover design, 77 participants were randomized to attend three 2-hour-long exposure sessions separated by 1-week washout periods. Each participant was exposed to high, medium, and low TRAP concentrations in a room near an interstate highway. Particle number concentrations, black carbon concentrations, and temperature were monitored continuously. Systolic BP (SBP), diastolic BP, and heart rate were measured every 10 minutes. Outcomes were analyzed with a linear mixed model. The primary outcome was the change in SBP from 20 minutes from the start of exposure. SBP increased with exposure duration, and the amount of increase was related to the magnitude of exposure. The mean change in SBP was 0.6 mm Hg for low exposure (mean particle number and black carbon concentrations, 2500 particles/cm 3 and 149 ng/m 3 ), 1.3 mm Hg for medium exposure (mean particle number and black carbon concentrations, 11 000 particles/cm 3 and 409 ng/m 3 ), and 2.8 mm Hg for high exposure (mean particle number and black carbon concentrations, 30 000 particles/cm 3 and 826 ng/m 3 ; linear trend P =0.019). There were no statistically significant differences in the secondary outcomes, diastolic BP, or heart rate. In conclusion, reducing indoor concentrations of TRAP was effective in preventing acute increases in SBP.


2013 ◽  
Vol 13 (2) ◽  
pp. 4289-4330 ◽  
Author(s):  
L. Riuttanen ◽  
M. Dal Maso ◽  
G. de Leeuw ◽  
I. Riipinen ◽  
L. Sogacheva ◽  
...  

Abstract. Finland experienced extraordinary smoke episodes in 2006. The smoke was measured at the three SMEAR measurement network stations in Finland after it had been transported several hundreds of kilometers from burning areas in Eastern Europe. A trajectory method combining MODIS fire detections and HYSPLIT trajectories enabled us to separate the effect of biomass burning smoke from the measured concentrations and also study the changes in the smoke during its transport. The long-range transported smoke included at least NOx, SO2, CO2, CO, black carbon and fine aerosol particles, peaking at 100 to 200 nm size. The most reliable smoke markers were CO and SO2, especially when combined with particle data, for which black carbon or the condensation sink are very effective parameters separating the smoke episodes from no-smoke episodes. Signs of fresh secondary particles was observed based on the particle number size distribution data. While transported from south to north, particles grew in size, even after transport of tens of hours and several hundreds of kilometres. No new aerosol particle formation events were observed at the measurement sites during the smoke periods.


Sign in / Sign up

Export Citation Format

Share Document