Endothelin-1 Acts via Protein Kinase C to Block KATP Channels in Rabbit Coronary and Pulmonary Arterial Smooth Muscle Cells

2005 ◽  
Vol 45 (2) ◽  
pp. 99-108 ◽  
Author(s):  
Won Sun Park ◽  
Eun A Ko ◽  
Jin Han ◽  
Nari Kim ◽  
Yung E Earm
2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Jie Li ◽  
Lei Cao ◽  
Cang-Bao Xu ◽  
Jun-Jie Wang ◽  
Yong-Xiao Cao

Minimally modified low-density lipoprotein (mmLDL) is a risk factor for cardiovascular disease. The present study investigated the effects of mmLDL on the expression of endothelin type A () receptors in coronary arteries. Rat coronary arteries were organ-cultured for 24 h. The contractile responses were recorded using a myographic system. receptor mRNA and protein expressions were determined using real-time PCR and western blotting, respectively. The results showed that organ-culturing in the presence of mmLDL enhanced the arterial contractility mediated by the receptor in a concentration-dependent and time-dependent manner. Culturing with mmLDL (10 μg/mL) for 24 h shifted the concentration-contractile curves toward the left significantly with increased of from control of and significantly increased receptor mRNA and protein levels. Inhibition of the protein kinase C, extracellular signal-related kinases 1 and 2 (ERK1/2), or NF-κB activities significantly attenuated the effects of mmLDL. The c-Jun N-terminal kinase inhibitor or the p38 pathway inhibitor, however, had no such effects. The results indicate that mmLDL upregulates the receptors in rat coronary arterial smooth muscle cells mainlyviaactivating protein kinase C, ERK1/2, and the downstream transcriptional factor, NF-κB.


1993 ◽  
Vol 265 (6) ◽  
pp. C1723-C1728 ◽  
Author(s):  
A. D. Bonev ◽  
M. T. Nelson

We explored the possibility that muscarinic receptor stimulation can inhibit ATP-sensitive K+ (KATP) channels in smooth muscle cells from guinea pig urinary bladder. Whole cell K+ currents were measured in smooth muscle cells isolated from the detrusor muscle of the guinea pig bladder. Stimulation of muscarinic receptors by carbachol (CCh; 10 microM) inhibited KATP currents by 60.7%. Guanosine 5'-O-(2-thiodiphosphate) in the pipette (internal) solution prevented the CCh-induced inhibition of KATP currents. Activators of protein kinase C (PKC), a diacylglycerol analogue, and phorbol 12-myristate 13-acetate inhibited KATP currents by 63.5 and 73.9%, respectively. Blockers of PKC (bisindolylmaleimide GF-109203X and calphostin C) greatly reduced CCh inhibition of KATP currents. We propose that muscarinic receptor stimulation inhibits KATP channels in smooth muscle cells from urinary bladder through activation of PKC.


1991 ◽  
Vol 69 (3) ◽  
pp. 383-388 ◽  
Author(s):  
N. Jin ◽  
C. S. Packer ◽  
R. A. Rhoades

Reactive oxygen species (at least relatively high doses) cause contraction of pulmonary arterial smooth muscle. The objective of the present study was to elucidate the possible cellular mechanisms involved in reactive oxygen-mediated contraction. Isolated arterial rings from Sprague–Dawley rats were placed in tissue baths containing Earle's balanced salt solution. The maximum active force production (Po) in response to 80 mM KCl was obtained. All other responses were normalized as percentages of Po for comparative purposes. Exposure to reactive oxygen (generated from either the xanthine oxidase reaction (XO) or the glucose oxidase reaction) resulted in pulmonary arterial muscle developing mean active tension of 17.1 ± 3.0% Po. This contraction was independent of extracellular calcium, since it was not affected by verapamil (a calcium channel blocker) or by placement of the arterial muscle in calcium-free media. Phentolamine (an α1-receptor blocker) and propranolol (a β-receptor blocker) did not diminish the response to XO. Ryanodine (a SR calcium release inhibitor), while reducing the response to norepinephrine, did not affect the response to XO. However, H-7 (an inhibitor of protein kinase C) decreased the XO-mediated contraction by 49%. These results indicate that while Ca2+ may not be involved as a second messenger, protein kinase C activity appears to play a role in the transduction pathway of reactive oxygen species mediated contraction of pulmonary arterial smooth muscle.Key words: muscle calcium, α1-receptor, ryanodine, protein kinase C, vascular smooth muscle, oxygen radicals, verapamil.


Sign in / Sign up

Export Citation Format

Share Document