Chronic Direct Stimulation of Adenylyl Cyclase Induces Cardiac Desensitization to Catecholamine and Beta-Adrenergic Receptor Downregulation in Rabbits

2006 ◽  
Vol 48 (5) ◽  
pp. 223-230 ◽  
Author(s):  
Ikuyo Takagi ◽  
Jun Nejima ◽  
Kaname Kiuchi ◽  
Gen Takagi ◽  
Teruo Takano
1996 ◽  
Vol 271 (3) ◽  
pp. E556-E562
Author(s):  
Y. Ruan ◽  
H. Kan ◽  
C. Cano ◽  
K. U. Malik

The purpose of the present study was to investigate the contribution of prostaglandins to lipolysis elicited by beta-adrenergic receptor activation in the heart. We have studied the effect of prostaglandin E2 (PGE2), prostaglandin I2 (PGI2), and their precursor arachidonic acid (AA) in the presence and absence of a cyclooxygenase inhibitor, sodium meclofenamate, on glycerol output elicited by stimulation of beta-adrenergic receptors in the isolated rabbit heart with isoproterenol (ISOP). Bolus injections of ISOP (475 pmol) produced a constant increase in glycerol and 6-ketoprostaglandin F1 alpha (6-keto-PGF1 alpha) output. Infusion of sodium meclofenamate (16 microM) reduced basal and attenuated ISOP-induced 6-keto-PGF1 alpha output and enhanced glycerol output. During inhibition of endogenous prostaglandin synthesis with meclofenamate, infusion of PGI2 or PGE2 (0.1-1 microM) inhibited ISOP-induced glycerol output. Infusion of AA (0.1-1 microM) increased 6-keto-PGF1 alpha and reduced glycerol output. Infusion of sodium meclofenamate abolished the effect of AA to increase 6-keto-PGF1 alpha and to decrease glycerol output. These data suggest that prostaglandins synthesized in the heart act as an inhibitory modulator of beta-adrenergic receptor-stimulated cardiac lipolysis.


1999 ◽  
Vol 83 (12) ◽  
pp. 80-85 ◽  
Author(s):  
Dorothy E Vatner ◽  
Kuniya Asai ◽  
Mitsunori Iwase ◽  
Yoshihiro Ishikawa ◽  
Richard P Shannon ◽  
...  

1996 ◽  
Vol 271 (4) ◽  
pp. H1473-H1482 ◽  
Author(s):  
M. Iwase ◽  
Y. Ishikawa ◽  
Y. T. Shen ◽  
R. P. Shannon ◽  
N. Sato ◽  
...  

Because major cardiovascular disease states are characterized by defects in adenylyl cyclase regulation, it becomes important to understand the mechanisms by which adenylyl cyclase activators affect inotropy and chronotropy in intact conscious animals. Accordingly, we examined the inotropic and chronotropic responses to forskolin in 11 normal conscious, chronically instrumented dogs and 3 dogs with ventricular denervation (VD). Left ventricular first derivative of pressure (LV dP/dt) increased by 96 +/- 7%, P < 0.05, in response to forskolin (50 nmol.kg-1.min-1) in normal dogs and by significantly less, 52 +/- 14%, in VD dogs. Circulating norepinephrine (NE) levels increased similarly in both groups (from 226 +/- 18 to 389 +/- 33 pg/ml in normal dogs, from 177 +/- 23 to 329 +/- 71 pg/ml in VD dogs). In the presence of ganglionic blockade, the increase in LV dP/dt in response to forskolin was reduced (+62 +/- 4%) in normal dogs but was unchanged in VD dogs (+52 +/- 12%). Ganglionic blockade abolished the increase in circulating NE levels in both groups. Increases in heart rate in the presence of ganglionic blockade (+54 +/- 6 beats/min) were less than in the presence of atropine alone (+92 +/- 10 beats/min). Notably, the LV dP/dt and heart rate responses to forskolin were further attenuated by beta-adrenergic receptor blockade in the presence and absence of ganglionic blockade. Morphine also attenuated the increases in both LV dP/dt and plasma NE in response to forskolin. Increases in LV dP/dt in response to NKH-477 (30 micrograms/kg), a water-soluble forskolin derivative, were similar before and after ganglionic blockade (+63 +/- 8 and +51 +/- 10%, respectively). However, in vitro experiments in LV sarcolemmal membrane preparations demonstrated that stimulation of adenylyl cyclase by forskolin and NKH-477 was not affected by beta-adrenergic receptor blockade. These results indicate that in conscious dogs, inotropic and chronotropic effects of forskolin are not only due to direct activation of adenylyl cyclase, but the effects also are mediated by neural mechanisms and potentiated by the prevailing level of sympathetic tone.


1994 ◽  
Vol 266 (2) ◽  
pp. L187-L191 ◽  
Author(s):  
M. Nogami ◽  
D. J. Romberger ◽  
S. I. Rennard ◽  
M. L. Toews

Pretreatment of cultured human tracheal smooth muscle cells with transforming growth factor-beta 1 (TGF-beta 1) decreased adenosine 3',5'-cyclic monophosphate (cAMP) accumulation by intact cells stimulated with the beta-adrenergic agonist isoproterenol. The maximal inhibition of isoproterenol-stimulated cAMP accumulation by TGF-beta 1 was 31 +/- 3%, and the mean effective concentration (EC50) of TGF-beta 1 was approximately 1.5 pM. TGF-beta 1 decreased the maximal response to isoproterenol but did not change the EC50 value of isoproterenol. TGF-beta 1 did not change cAMP accumulation stimulated by forskolin. TGF-beta 1 pretreatment decreased isoproterenol-stimulated adenylyl cyclase activity measured in broken cell preparations, but did not change the fluoride-stimulated adenylyl cyclase activity. Together these results suggest that the TGF-beta 1 effect is not by direct inhibition of adenylyl cyclase or by decreased activity of the stimulatory GTP-binding protein. Saturation binding experiments with the beta-adrenergic receptor radioligand [125I]iodopindolol showed that TGF-beta 1 pretreatment decreased the beta-adrenergic receptor number. The protein synthesis inhibitor cycloheximide abolished the effect of TGF-beta 1 on both cAMP accumulation and on beta-adrenergic receptor number, indicating that protein synthesis is involved. These results suggest that TGF-beta 1 in the lung could play a role in changing the responsiveness of airway smooth muscle cells to endogenous catecholamines and to beta-adrenergic agonists used in therapy.


1997 ◽  
Vol 272 (4) ◽  
pp. L644-L650 ◽  
Author(s):  
C. W. Emala ◽  
J. Kuhl ◽  
C. L. Hungerford ◽  
C. A. Hirshman

Inflammation, increased cytokine production, and decreased responsiveness of airway smooth muscle (ASM) to beta-adrenergic agonists are characteristics of asthma. We questioned whether the cytokine tumor necrosis factor-alpha (TNF-alpha) directly impaired beta-adrenergic signal transduction in cultured canine ASM cells. Confluent ASM cells exposed to TNF-alpha (0.1-10 ng/ml) for 72 h showed lower maximal levels of adenylyl cyclase activity in response to isoproterenol (10 ng/ml; 14 +/- 4.3 vs. 7.5 +/- 1.3 pmol adenosine 3',5'-cyclic monophosphate x well(-1) x 20 min(-1), control vs. treated, respectively), despite no changes in beta-adrenergic receptor numbers (maximum number of binding sites = 4.8 +/- 0.72 vs. 4.5 +/- 0.81 fmol/mg protein, control vs. treated, respectively). Adenylyl cyclase activities in response to prostaglandin E1, NaF, or forskolin were not different in treated and untreated cells. These results demonstrate that a cytokine known to be increased during exacerbation of asthmatic symptoms directly impairs beta-adrenergic function in ASM cells and suggests a mechanism by which inflammation impairs beta-adrenergic receptor signal transduction in asthma.


Sign in / Sign up

Export Citation Format

Share Document