scholarly journals Relation between Relative Cerebral Blood Flow, Relative Cerebral Blood Volume, and Mean Transit Time in Patients with Acute Ischemic Stroke Determined by Perfusion-Weighted MRI

2003 ◽  
Vol 23 (5) ◽  
pp. 605-611 ◽  
Author(s):  
Oliver C. Singer ◽  
Richard du Mesnil de Rochemont ◽  
Christian Foerch ◽  
Astrid Stengel ◽  
Heiner Lanfermann ◽  
...  

The relation between relative cerebral blood flow (relCBF), relative cerebral blood volume (relCBV), and mean transit time (MTT) changes was examined in 20 patients with acute cerebral ischemia (<6 h) using perfusion-weighted magnetic resonance imaging. Regions of interest (ROI) were selected on MTT maps covering the entire MTT abnormal cortical area. These ROIs were transferred to the relCBF and relCBV maps to analyze the relation between relCBF, relCBV, and MTT on a voxel-by-voxel basis. On the unaffected side, a tight coupling of relCBF and relCBV was found with little variation of MTT. In hypoperfused cortex, relCBV was increased at all investigated relCBF categories, and there was greater relCBV variability than on the unaffected side. Only a severe decrease of relCBF, to less than 0.3, in comparison with the unaffected side was associated with a reduction of relCBV less than 1.0. In contrast to the unaffected side, a power law function (relCBV = 2.283 × relCBF0.549) resulted in a better fit than using a linear function for the correlation of relCBF and relCBV. MTT ratios increased steadily with decreasing CBF values. In conclusion, there is a clear relation between different perfusion-weighted magnetic resonance imaging parameters in acute ischemia, reflecting both the degree of hemodynamic failure as well as compensatory mechanisms including vasodilation.

Stroke ◽  
2000 ◽  
Vol 31 (8) ◽  
pp. 1958-1964 ◽  
Author(s):  
Masaharu Sakoh ◽  
Lisbeth Røhl ◽  
Carsten Gyldensted ◽  
Albert Gjedde ◽  
Leif Østergaard

Neurosurgery ◽  
2006 ◽  
Vol 58 (4) ◽  
pp. 640-646 ◽  
Author(s):  
Iain D. Wilkinson ◽  
David A. Jellineck ◽  
David Levy ◽  
Frederik L. Giesel ◽  
Charles A. J. Romanowski ◽  
...  

Abstract OBJECTIVE: Glucocorticoid analogues are often administered to patients with intracranial space-occupying lesions. Clinical response can be dramatic, but the neurophysiological response is not well documented. This study sought to investigate the blood-lesion barrier, blood-brain barrier, and cerebral perfusion characteristics of patients who have undergone such therapy using magnetic resonance imaging. METHODS: Seventeen patients with intracranial mass-enhancing lesions underwent magnetic resonance imaging before and after 3 days of high-dose dexamethasone therapy. Assessments of blood-lesion barrier and blood-brain barrier integrity were based on a dynamic T1-weighted exogenous contrast technique that yielded the normalized maximal change in contrast uptake (T1-uptake). Perfusion was assessed using a dynamic T2*-weighted exogenous contrast technique to yield relative regional cerebral blood volume and first-moment mean transit time. Comparisons were made in T1-uptake, regional cerebral blood volume, and first-moment mean transit time of both enhancing lesion and contralateral normal-appearing white matter (CNAWM) obtained before and after dexamethasone. RESULTS: Significant reduction in T1-uptake was observed (19% decrease, P &lt; 0.005) within enhancing pathological tissue, whereas no significant alteration was detected in CNAWM. Regional cerebral blood volume was significantly reduced in both enhancing tissue (28% decrease, P &lt; 0.005) and in CNAWM (20% decrease, P &lt; 0.001). Bolus first-moment mean transit time significantly increased (2.0 s prolongation, P &lt; 0.05) in CNAWM, whereas there was no significant change (1.4 s prolongation, P &gt; 0.05) within enhancing tissue. CONCLUSION: Glucocorticoid-analogue therapy not only affects the permeability of the blood-lesion barrier and lesion blood volume but also affects blood flow within normal-appearing contralateral parenchyma. There is a need for controls in steroid therapy in magnetic resonance imaging studies, which involve assessments of cerebrovascular function.


2006 ◽  
Vol 2006 ◽  
pp. 1-11 ◽  
Author(s):  
Ying Han ◽  
Enzhong Li ◽  
Jie Tian ◽  
Jian Chen ◽  
Huifang Wang ◽  
...  

Diffusion- and perfusion-weighted magnetic resonance imaging (DWI and PWI) was applied for stroke diagnose in 120 acute (<48h) ischemic stroke patients. At hyperacute (<6h) stage, it is difficult to find out the infarction zone in conventional T1 or T2 image, but it is easy in DWI, apparent diffusion coefficient (ADC) map; when at 3–6-hour stage it is also easy in PWI, cerebral blood flow (CBF) map, cerebral blood volume (CBV) map, and mean transit time (MTT) map; at acute (6–48 h) stage, DWI or PWI is more sensitive than conventional T1 or T2 image too. Combining DWI with ADC, acute and chronic infarction can be distinguished. Besides, penumbra which should be developed in meaning was used as an indication or to evaluate the therapeutic efficacy. There were two cases (<1.5h) that broke the model of penumbra because abnormity was found in DWI but not that in PWI, finally they recovered without any sequela.


2009 ◽  
Vol 29 (11) ◽  
pp. 1856-1866 ◽  
Author(s):  
Manus J Donahue ◽  
Jakob U Blicher ◽  
Leif Østergaard ◽  
David A Feinberg ◽  
Bradley J MacIntosh ◽  
...  

The development of neuroimaging methods to characterize flow-metabolism coupling is crucial for understanding mechanisms that subserve oxygen delivery. Functional magnetic resonance imaging (fMRI) using blood-oxygenation-level-dependent (BOLD) contrast reflects composite changes in cerebral blood volume (CBV), cerebral blood flow (CBF), and the cerebral metabolic rate of oxygen consumption (CMRO2). However, it is difficult to separate these parameters from the composite BOLD signal, thereby hampering MR-based flow-metabolism coupling studies. Here, a novel, noninvasive CBV-weighted MRI approach (VASO-FLAIR with 3D GRASE (GRadient-And-Spin-Echo)) is used in conjunction with CBF-weighted and BOLD fMRI in healthy volunteers ( n=7) performing simultaneous visual (8 Hz flashing-checkerboard) and motor (1 Hz unilateral joystick) tasks. This approach allows for CBV, CBF, and CMRO2 to be estimated, yielding (mean±s.d.): ΔCBF=63%±12%, ΔCBV=17%±7%, and ΔCMRO2=13%±11% in the visual cortex, and ΔCBF=46%±11%, ΔCBV=8%±3%, and ΔCMRO2=12%±13% in the motor cortex. Following the visual and motor tasks, the BOLD signal became more negative ( P=0.003) and persisted longer ( P=0.006) in the visual cortex compared with the motor cortex, whereas CBV and CBF returned to baseline earlier and equivalently. The proposed whole-brain technique should be useful for assessing regional discrepancies in hemodynamic reactivity without the use of intravascular contrast agents.


1998 ◽  
Vol 18 (4) ◽  
pp. 425-432 ◽  
Author(s):  
Leif Østergaard ◽  
Donald F. Smith ◽  
Peter Vestergaard-Poulsen ◽  
SørenB. Hansen ◽  
Antony D. Gee ◽  
...  

The authors determined cerebral blood flow (CBF) with magnetic resonance imaging (MRI) of contrast agent bolus passage and compared the results with those obtained by O-15 labeled water (H215O) and positron emission tomography (PET). Six pigs were examined by MRI and PET under normo- and hypercapnic conditions. After dose normalization and introduction of an empirical constant ΦGd, absolute regional CBF was calculated from MRI. The spatial resolution and the signal-to-noise ratio of CBF measurements by MRI were better than by the H215O-PET protocol. Magnetic resonance imaging cerebral blood volume (CBV) estimates obtained using this normalization constant correlated well with values obtained by O-15 labeled carbonmonooxide (C15O) PET. However, PET CBV values were approximately 2.5 times larger than absolute MRI CBV values, supporting the hypothesized sensitivity of MRI to small vessels.


Sign in / Sign up

Export Citation Format

Share Document