ENERGY EXPENDITURE DURING WEIGHT SUPPORTED TREADMILL WALKING.

2005 ◽  
Vol 16 (4) ◽  
pp. 37-38
Author(s):  
James J. Laskin ◽  
Virginia Kudritzki ◽  
Sierra Langstaff ◽  
Travis Obermire ◽  
Molly Sanders
1992 ◽  
Vol 4 (2) ◽  
pp. 166-179 ◽  
Author(s):  
Molly S. Bray ◽  
James R. Morrow ◽  
James M. Pivarnik ◽  
John T. Bricker

This study investigated the validity of the Caltrac accelerometer for estimating resting and exercise energy expenditure for children. Seventeen children 9 to 12 years of age participated in the study. Criterion values of energy expenditure were determined from measures of oxygen consumption (VO2) and respiratory exchange ratio (RER), and Caltrac estimates of energy expenditure were obtained concurrently for each experimental condition. Correlations were significant between Caltrac estimates and measured energy expenditure at rest (r = .53, p<.03) and at slow (r = .89, p<.001) and brisk (r = .85, p<.001) treadmill walking. The Caltrac overestimated caloric expenditure for rest (M = 7%; range = −8 to 36%) and also for both slow (M = 17%; range = −3 to 30%) and brisk (M = 25%; range = 5 to 46%) walking. However, because of the high validity coefficients during activity, and because of its practicality in field settings, the Caltrac may be useful in estimating daily resting and walking energy expenditure for groups of children.


2014 ◽  
Vol 22 (2) ◽  
pp. 276-283 ◽  
Author(s):  
Leslie Peacock ◽  
Allan Hewitt ◽  
David A. Rowe ◽  
Rona Sutherland

Purpose:The study investigated (a) walking intensity (stride rate and energy expenditure) under three speed instructions; (b) associations between stride rate, age, height, and walking intensity; and (c) synchronization between stride rate and music tempo during overground walking in a population of healthy older adults.Methods:Twenty-nine participants completed 3 treadmill-walking trials and 3 overground-walking trials at 3 self-selected speeds. Treadmill VO2 was measured using indirect calorimetry. Stride rate and music tempo were recorded during overground-walking trials.Results:Mean stride rate exceeded minimum thresholds for moderate to vigorous physical activity (MVPA) under slow (111.41 ± 11.93), medium (118.17 ± 11.43), and fast (123.79 ± 11.61) instructions. A multilevel model showed that stride rate, age, and height have a significant effect (p < .01) on walking intensity.Conclusions:Healthy older adults achieve MVPA with stride rates that fall below published minima for MVPA. Stride rate, age, and height are significant predictors of energy expenditure in this population. Music can be a useful way to guide walking cadence.


1997 ◽  
Vol 29 (Supplement) ◽  
pp. 261
Author(s):  
M. L. Pitbladdo ◽  
G. M. Maggiano ◽  
M. J. Duffrey ◽  
P. M. Ribisl

1999 ◽  
Vol 31 (Supplement) ◽  
pp. S153
Author(s):  
D. P. Swain ◽  
N. McClain ◽  
K. Davidson ◽  
A. Moseley ◽  
N. Reed

2018 ◽  
Vol 7 (11) ◽  
pp. 433 ◽  
Author(s):  
Daniel McDonough ◽  
Zachary Pope ◽  
Nan Zeng ◽  
Jung Lee ◽  
Zan Gao

This study evaluated the effects of exergaming on college students’ energy expenditure (EE), moderate-to-vigorous physical activity (MVPA), light physical activity (LPA), rating of perceived exertion (RPE), and enjoyment compared to traditional treadmill exercise, and sex differences. Sixty college students (30 female; X ¯ age = 23.6 ± 4.1 years) completed three 20-min exercise sessions on Xbox 360 Kinect Just Dance (Microsoft, Redmond, WA, USA), Xbox 360 Kinect Reflex Ridge (Microsoft, Redmond, WA, USA), and treadmill walking. Their EE and PA were assessed by ActiGraph accelerometers (ActiGraph Co.; Pensacola, FL, USA); RPE every four min; enjoyment via an established scale. Significant exercise-type by sex interaction effects were observed for RPE (p < 0.01): females reported significantly lower RPE during exergaming sessions but significantly higher RPE during treadmill walking. Results revealed significant main effects for all outcomes between exercise sessions (all p < 0.01): treadmill walking resulted in significantly higher metabolic equivalents (METs), MVPA, and EE (p < 0 .01), yet lower LPA (p < 0.01), compared to the two exergaming sessions. Participants’ RPE was significantly higher during treadmill walking than during exergaming sessions, with exergaming eliciting significantly higher enjoyment (all p < 0.01). College students find exergaming more enjoyable and report lower RPE compared to traditional treadmill exercise, though not yet matching the moderate physiological intensity level.


2018 ◽  
Vol 105 (4) ◽  
pp. 371-385 ◽  
Author(s):  
T Nakagata ◽  
Y Yamada ◽  
H Naito

The benefit of body weight resistance exercise with slow movement (BWRE-slow) for muscle function is well-documented, but not for energy metabolism. We aimed to examine physiological responses [e.g., energy expenditure (EE), respiratory exchange ratio (RER), and blood lactate (La)] during and after BWRE-slow compared to EE-matched treadmill walking (TW). Eight healthy young men (23.4 ± 1.8 years old, 171.2 ± 6.2 cm, 63.0 ± 4.8 kg) performed squat, push-up, lunge, heel-raise, hip-lift, and crunch exercises with BWRE-slow modality. Both the concentric and eccentric phases were set to 3 s. A total of three sets (10 repetitions) with 30 s rest between sets were performed for each exercise (26.5 min). On another day, subjects walked on a treadmill for 26.5 min during which EE during exercise was matched to that of BWRE-slow with the researcher controlling the treadmill speed manually. The time course changes of EE and RER were measured. The EE during exercise for BWRE-slow (92.6 ± 16.0 kcal for 26.5 min) was not significantly different from the EE during exercise for TW (95.5 ± 14.1 kcal, p = 0.36). BWRE-slow elicited greater recovery EE (40.55 ± 3.88 kcal for 30 min) than TW (37.61 ± 3.19 kcal, p = 0.029). RER was significantly higher in BWRE-slow during and 0–5 min after exercise, but became significantly lower during 25–30 min after exercise, suggesting greater lipid oxidation was induced about 30 min after exercise in BWRE-slow compared to TW. We also indicated that BWRE-slow has 3.1 metabolic equivalents in average, which is categorized as moderate-intensity physical activity.


Sign in / Sign up

Export Citation Format

Share Document