scholarly journals Propofol and Midazolam Inhibit Conscious Memory Processes Very Soon after Encoding: An Event-related Potential Study of Familiarity and Recollection in Volunteers

2009 ◽  
Vol 110 (2) ◽  
pp. 295-312 ◽  
Author(s):  
Robert A. Veselis ◽  
Kane O. Pryor ◽  
Ruth A. Reinsel ◽  
Yuelin Li ◽  
Meghana Mehta ◽  
...  

Background Intravenous drugs active via gamma-aminobutyric acid receptors to produce memory impairment during conscious sedation. Memory function was assessed using event-related potentials (ERPs) while drug was present. Methods The continuous recognition task measured recognition of photographs from working (6 s) and long-term (27 s) memory while ERPs were recorded from Cz (familiarity recognition) and Pz electrodes (recollection recognition). Volunteer participants received sequential doses of one of placebo (n = 11), 0.45 and 0.9 microg/ml propofol (n = 10), 20 and 40 ng/ml midazolam (n = 12), 1.5 and 3 microg/ml thiopental (n = 11), or 0.25 and 0.4 ng/ml dexmedetomidine (n = 11). End-of-day yes/no recognition 225 min after the end of drug infusion tested memory retention of pictures encoded on the continuous recognition tasks. Results Active drugs increased reaction times and impaired memory on the continuous recognition task equally, except for a greater effect of midazolam (P < 0.04). Forgetting from continuous recognition tasks to end of day was similar for all drugs (P = 0.40), greater than placebo (P < 0.001). Propofol and midazolam decreased the area between first presentation (new) and recognized (old, 27 s later) ERP waveforms from long-term memory for familiarity (P = 0.03) and possibly for recollection processes (P = 0.12). Propofol shifted ERP amplitudes to smaller voltages (P < 0.002). Dexmedetomidine may have impaired familiarity more than recollection processes (P = 0.10). Thiopental had no effect on ERPs. Conclusion Propofol and midazolam impaired recognition ERPs from long-term memory but not working memory. ERP measures of memory revealed different pathways to end-of-day memory loss as early as 27 s after encoding.

2004 ◽  
Vol 101 (4) ◽  
pp. 831-841 ◽  
Author(s):  
Robert A. Veselis ◽  
Ruth A. Reinsel ◽  
Vladimir A. Feshchenko ◽  
Ray Johnson

Background Sedative-hypnotic drugs impair memory, but details regarding the nature of this effect are unknown. The influences of propofol, thiopental, and dexmedetomidine on the performance of a task that isolates specific components of episodic memory function were measured. Methods Working (1 intervening item, 6 s) and long-term memory (10 intervening items, 33 s) were tested using auditory words in a continuous recognition task before and during drug administration. Eighty-three volunteer participants were randomly assigned to receive a constant target concentration of drug or placebo, producing sedative effects from imperceptible to unresponsiveness. Responsive participants were categorized as high or low performers, using a median split of long-term memory performance during drug administration. Recognition of words at the end of the study day was assessed. Results High performers had acquisition of material into long-term memory when drug was present at the same level as placebo. Retention of this material at 225 min was significantly less for propofol (39 +/- 23% loss of material) than for other drugs (17-23% loss; P < 0.01). Greater sedation in low performers was evident in multiple measures. Memory for words presented before drug was no different from that associated with placebo for all groups. Conclusions Lack of retention of material acquired into long-term memory during propofol administration, associated with minimal sedation, seems to define drug-induced amnesia. Sedation seems to impair the acquisition or encoding of material into long-term memory. Therefore, the putative targets of drug-induced amnesia by propofol are processes associated with retention of material in long-term memory.


2021 ◽  
Vol 13 ◽  
Author(s):  
Ricardo J. Alejandro ◽  
Pau A. Packard ◽  
Tineke K. Steiger ◽  
Lluis Fuentemilla ◽  
Nico Bunzeck

Learning novel information can be promoted if it is congruent with already stored knowledge. This so-called semantic congruence effect has been broadly studied in healthy young adults with a focus on neural encoding mechanisms. However, the impacts on retrieval, and possible impairments during healthy aging, which is typically associated with changes in declarative long-term memory, remain unclear. To investigate these issues, we used a previously established paradigm in healthy young and older humans with a focus on the neural activity at a final retrieval stage as measured with electroencephalography (EEG). In both age groups, semantic congruence at encoding enhanced subsequent long-term recognition memory of words. Compatible with this observation, semantic congruence led to differences in event-related potentials (ERPs) at retrieval, and this effect was not modulated by age. Specifically, congruence modulated old/new ERPs at a fronto-central (Fz) and left parietal (P3) electrode in a late (400–600 ms) time window, which has previously been associated with recognition memory processes. Importantly, ERPs to old items also correlated with the positive effect of semantic congruence on long-term memory independent of age. Together, our findings suggest that semantic congruence drives subsequent recognition memory across the lifespan through changes in neural retrieval processes.


2003 ◽  
Vol 26 (6) ◽  
pp. 745-746 ◽  
Author(s):  
Robert H. Logie ◽  
Sergio Della Sala

Working-memory retention as activated long-term memory fails to capture orchestrated processing and storage, the hallmark of the concept of working memory. The event-related potential (ERP) data are compatible with working memory as a mental workspace that holds and manipulates information on line, which is distinct from long-term memory, and deals with the products of activated traces from stored knowledge.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Mathias Weymar ◽  
Carlos Ventura-Bort ◽  
Julia Wendt ◽  
Alexander Lischke

AbstractIn daily life, we automatically form impressions of other individuals on basis of subtle facial features that convey trustworthiness. Because these face-based judgements influence current and future social interactions, we investigated how perceived trustworthiness of faces affects long-term memory using event-related potentials (ERPs). In the current study, participants incidentally viewed 60 neutral faces differing in trustworthiness, and one week later, performed a surprise recognition memory task, in which the same old faces were presented intermixed with novel ones. We found that after one week untrustworthy faces were better recognized than trustworthy faces and that untrustworthy faces prompted early (350–550 ms) enhanced frontal ERP old/new differences (larger positivity for correctly remembered old faces, compared to novel ones) during recognition. Our findings point toward an enhanced long-lasting, likely familiarity-based, memory for untrustworthy faces. Even when trust judgments about a person do not necessarily need to be accurate, a fast access to memories predicting potential harm may be important to guide social behaviour in daily life.


2018 ◽  
Author(s):  
Pau A. Packard ◽  
Tineke K. Steiger ◽  
Lluis Fuentemilla ◽  
Nico Bunzeck

AbstractLong-term memory can improve when incoming information is congruent with known semantic information. This so-called congruence effect has widely been shown in younger adults but age-related changes and neural mechanisms remain unclear. Here, congruence improved recognition memory in younger and older adults (i.e. congruency effect), but – importantly – this effect decreased with age. Electroencephalography data show that, in both groups, congruence led to widespread differences in event-related potentials (ERPs) and alpha-beta oscillations (8-30 Hz), known to support semantic processing. Importantly, these ERP differences predicted increases in memory performance, especially for congruent items. Finally, age-related differences in memory were accompanied by a positive ERP and later decrease in theta-alpha (5-13 Hz) during encoding, which were greater in the younger group. Together, although semantic congruence generally increases long-term memory, the effect is less pronounced in the elderly. At the neural level, theta-alpha oscillations, previously linked to memory and attentional processes, provide a mechanistic explanation for such an age-related effect.


1992 ◽  
Vol 10 (1) ◽  
pp. 25-42 ◽  
Author(s):  
Edwin C. Hantz ◽  
Garry C. Crummer ◽  
John W. Wayman ◽  
Joseph P. Walton ◽  
Robert D. Frisina

During perceptual tasks involving the discrimination of musical intervals, event-related potentials, specifically the P3, were measured for three subject groups: musicians without absolute pitch, musicians with absolute pitch, and nonmusicians. The two interval-discrimination tasks were a simple two-note contour task and a difficult interval-size discrimination task. Clear effects on the neural waveforms were found for both training and the presence of the absolute pitch ability. In general, training increases the amplitude and shortens the latency of the P3, while the absolute pitch ability reduces the amplitude and shortens the latency, or eliminates the P3 altogether. The absolute pitch effect may be due to the use of a long-term memory strategy involved in the correct performance of the discrimination task rather than performing the task by updating working memory each time a target occurs. Finally, these data are contrasted with those from studies involving sine tones and timbrediscrimination tasks.


Sign in / Sign up

Export Citation Format

Share Document