The Safety and Accuracy of Freehand Pedicle Screw Placement in the Subaxial Cervical Spine

Spine ◽  
2014 ◽  
Vol 39 (4) ◽  
pp. 280-285 ◽  
Author(s):  
Jin Hoon Park ◽  
Sang Ryong Jeon ◽  
Sung Woo Roh ◽  
Jeoung Hee Kim ◽  
Seung Chul Rhim
2020 ◽  
Vol 32 (6) ◽  
pp. 891-899 ◽  
Author(s):  
Jonathan J. Rasouli ◽  
Brooke T. Kennamer ◽  
Frank M. Moore ◽  
Alfred Steinberger ◽  
Kevin C. Yao ◽  
...  

OBJECTIVEThe C7 vertebral body is morphometrically unique; it represents the transition from the subaxial cervical spine to the upper thoracic spine. It has larger pedicles but relatively small lateral masses compared to other levels of the subaxial cervical spine. Although the biomechanical properties of C7 pedicle screws are superior to those of lateral mass screws, they are rarely placed due to increased risk of neurological injury. Although pedicle screw stimulation has been shown to be safe and effective in determining satisfactory screw placement in the thoracolumbar spine, there are few studies determining its utility in the cervical spine. Thus, the purpose of this study was to determine the feasibility, clinical reliability, and threshold characteristics of intraoperative evoked electromyographic (EMG) stimulation in determining satisfactory pedicle screw placement at C7.METHODSThe authors retrospectively reviewed a prospectively collected data set. All adult patients who underwent posterior cervical decompression and fusion with placement of C7 pedicle screws at the authors’ institution between January 2015 and March 2019 were identified. Demographic, clinical, neurophysiological, operative, and radiographic data were gathered. All patients underwent postoperative CT scanning, and the position of C7 pedicle screws was compared to intraoperative neurophysiological data.RESULTSFifty-one consecutive C7 pedicle screws were stimulated and recorded intraoperatively in 25 consecutive patients. Based on EMG findings, 1 patient underwent intraoperative repositioning of a C7 pedicle screw, and 1 underwent removal of a C7 pedicle screw. CT scans demonstrated ideal placement of the C7 pedicle screw in 40 of 43 instances in which EMG stimulation thresholds were > 15 mA. In the remaining 3 cases the trajectories were suboptimal but safe. When the screw stimulation thresholds were between 11 and 15 mA, 5 of 6 screws were suboptimal but safe, and in 1 instance was potentially dangerous. In instances in which the screw stimulated at thresholds ≤ 10 mA, all trajectories were potentially dangerous with neural compression.CONCLUSIONSIdeal C7 pedicle screw position strongly correlated with EMG stimulation thresholds > 15 mA. In instances, in which the screw stimulates at values between 11 and 15 mA, screw trajectory exploration is recommended. Screws with thresholds ≤ 10 mA should always be explored, and possibly repositioned or removed. In conjunction with other techniques, EMG threshold testing is a useful and safe modality in determining appropriate C7 pedicle screw placement.


2021 ◽  
Vol 88 ◽  
pp. 28-33
Author(s):  
Kotaro Satake ◽  
Tokumi Kanemura ◽  
Kenyu Ito ◽  
Satoshi Tanaka ◽  
Yoshinori Morita ◽  
...  

2009 ◽  
Vol 1 (2) ◽  
pp. 107-112 ◽  
Author(s):  
Rong-ming Xu ◽  
Wei-hu Ma ◽  
Qing Wang ◽  
Liu-jun Zhao ◽  
Yong Hu ◽  
...  

2009 ◽  
Vol 19 (3) ◽  
pp. 458-463 ◽  
Author(s):  
Edward Bayley ◽  
Zergham Zia ◽  
Robert Kerslake ◽  
Bronek M. Boszczyk

Author(s):  
Xinghuo Wu ◽  
Rong Liu ◽  
Song Xu ◽  
Cao Yang ◽  
Shuhua Yang ◽  
...  

This study aimed to evaluate the safety and accuracy of mixed reality–based intraoperative three-dimensional navigated pedicle screws in three-dimensional printed model of fractured upper cervical spine. A total of 27 cervical model from patients of upper cervical spine fractures formed the study group. All the C1 and C2 pedicle screws were inserted under mixed reality–based intraoperative three-dimensional image-guided navigation system. The accuracy and safety of the pedicle screw placement were evaluated on the basis of postoperative computerized tomography scans. A total of 108 pedicle screws were properly inserted into the cervical three-dimensional models under mixed reality–based navigation, including 54 C1 pedicle screws and 54 C2 pedicle screws. Analysis of the dimensional parameters of each pedicle at C1/C2 level showed no statistically significant differences in the ideal and the actual entry points, inclined angles, and tailed angles. No screw was misplaced outside the pedicle of the three-dimensional printed model, and no ionizing X-ray radiation was used during screw placement under navigation. It is easy and safe to place C1/C2 pedicle screws under MR surgical navigation. Mixed reality–based navigation is feasible within upper cervical spinal fractures with improved safety and accuracy of C1/C2 pedicle screw insertion.


2019 ◽  
Vol 10 (1) ◽  
pp. 46
Author(s):  
PatrickF Bergin ◽  
CaseyT Davidson ◽  
ElliotT Varney ◽  
LaRitaC Jones ◽  
MarionS Ward

Sign in / Sign up

Export Citation Format

Share Document