Cardioprotective effects of long-term treatment with raloxifene, a selective estrogen receptor modulator, on myocardial ischemia/reperfusion injury in ovariectomized rats

Author(s):  
Ming-Ting Chung ◽  
Pao-Yun Cheng ◽  
Kwok-Keung Lam ◽  
Shu-Ying Chen ◽  
Yi-Fan Ting ◽  
...  
1997 ◽  
Vol 273 (5) ◽  
pp. H2232-H2239 ◽  
Author(s):  
Thane G. Maddaford ◽  
Grant N. Pierce

Amiloride analogs block Na+/H+exchange and thereby protect the heart from myocardial ischemia-reperfusion injury. It is unclear whether drugs must be present before ischemia to be cardioprotective. After 60 min of global ischemia in the coronary-perfused right ventricular wall (RVW), as little as 1 min of exposure to dimethyl amiloride (DMA) immediately at the time of reperfusion protected the RVW. Delaying the drug attenuated the cardioprotection. If DMA was introduced in an ischemic solution near the end of ischemia, the cardioprotective effects were augmented. If the drug was washed out of the RVW vascular space before ischemia, cardioprotection was not observed. In contrast, in whole hearts, preischemic perfusion of the drug was necessary for cardioprotection and the cardioprotection remained even if the drug was washed out before ischemia. We conclude that Na+/H+exchange is active and contributes to contractile dysfunction during the first seconds of reperfusion. This is difficult to detect in the perfused whole heart, and the washout data suggest that this may be due to a limitation in drug delivery across the vascular wall. The data also suggest that the exchanger is not as active during ischemia itself as it is during reperfusion.


2000 ◽  
Vol 279 (1) ◽  
pp. H329-H338 ◽  
Author(s):  
Feng Gao ◽  
Theodore A. Christopher ◽  
Bernard L. Lopez ◽  
Eitan Friedman ◽  
Guoping Cai ◽  
...  

The purpose of this study was to determine whether the protective effects of adenosine on myocardial ischemia-reperfusion injury are altered with age, and if so, to clarify the mechanisms that underlie this change related to nitric oxide (NO) derived from the vascular endothelium. Isolated perfused rat hearts were exposed to 30 min of ischemia and 60 min of reperfusion. In the adult hearts, administration of adenosine (5 μmol/l) stimulated NO release (1.06 ± 0.19 nmol · min−1 · g−1, P < 0.01 vs. vehicle), increased coronary flow, improved cardiac functional recovery (left ventricular developed pressure 79 ± 3.8 vs. 57 ± 3.1 mmHg in vehicle, P < 0.001; maximal rate of left ventricular pressure development 2,385 ± 103 vs. 1,780 ± 96 in vehicle, P < 0.001), and reduced myocardial creatine kinase loss (95 ± 3.9 vs. 159 ± 4.6 U/100 mg protein, P < 0.01). In aged hearts, adenosine-stimulated NO release was markedly reduced (+0.42 ± 0.12 nmol · min−1 · g−1 vs. vehicle), and the cardioprotective effects of adenosine were also attenuated. Inhibition of NO production in the adult hearts significantly decreased the cardioprotective effects of adenosine, whereas supplementation of NO in the aged hearts significantly enhanced the cardioprotective effects of adenosine. The results show that the protective effects of adenosine on myocardial ischemia-reperfusion injury are markedly diminished in aged animals, and that the loss in NO release in response to adenosine may be at least partially responsible for this age-related alteration.


2021 ◽  
Vol 2021 ◽  
pp. 1-22
Author(s):  
Dingyi Lv ◽  
Minghao Luo ◽  
Zhe Cheng ◽  
Ruiyu Wang ◽  
Xiyang Yang ◽  
...  

Myocardial ischemia-reperfusion injury (MIRI) is a phenomenon that reperfusion leads to irreversible damage to the myocardium and increases mortality in acute myocardial infarction (AMI) patients. There is no effective drug to treat MIRI. Tubeimoside I (TBM) is a triterpenoid saponin purified from Chinese traditional medicine tubeimu. In this study, 4 mg/kg TBM was given to mice intraperitoneally at 15 min after ischemia. And TBM treatment improved postischemic cardiac function, decreased infarct size, diminished lactate dehydrogenase release, ameliorated oxidative stress, and reduced apoptotic index. Notably, ischemia-reperfusion induced a significant decrease in cardiac SIRT3 expression and activity, while TBM treatment upregulated SIRT3’s expression and activity. However, the cardioprotective effects of TBM were largely abolished by a SIRT3 inhibitor 3-(1H-1,2,3-triazol-4-yl) pyridine (3-TYP). This suggests that SIRT3 plays an essential role in TBM’s cardioprotective effects. In vitro, TBM also protected H9c2 cells against simulated ischemia/reperfusion (SIR) injury by attenuating oxidative stress and apoptosis, and siSIRT3 diminished its protective effects. Taken together, our results demonstrate for the first time that TBM protects against MIRI through SIRT3-dependent regulation of oxidative stress and apoptosis. TBM might be a potential drug candidate for MIRI treatment.


Sign in / Sign up

Export Citation Format

Share Document