scholarly journals Role of Outer Membrane Vesicles in Bacterial Physiology and Host Cell Interactions

2020 ◽  
Vol 2 (1) ◽  
pp. 3-9
Author(s):  
Lingyu Gao ◽  
Stijn van der Veen
Molecules ◽  
2019 ◽  
Vol 24 (10) ◽  
pp. 1972 ◽  
Author(s):  
Jūratė Skerniškytė ◽  
Emilija Karazijaitė ◽  
Julien Deschamps ◽  
Renatas Krasauskas ◽  
Romain Briandet ◽  
...  

Acinetobacter baumannii is a nosocomial human pathogen of increasing concern due to its multidrug resistance profile. The outer membrane protein A (OmpA) is an abundant bacterial cell surface component involved in A. baumannii pathogenesis. It has been shown that the C-terminal domain of OmpA is located in the periplasm and non-covalently associates with the peptidoglycan layer via two conserved amino acids, thereby anchoring OmpA to the cell wall. Here, we investigated the role of one of the respective residues, D268 in OmpA of A. baumannii clinical strain Ab169, on its virulence characteristics by complementing the ΔompA mutant with the plasmid-borne ompAD268A allele. We show that while restoring the impaired biofilm formation of the ΔompA strain, the Ab169ompAD268A mutant tended to form bacterial filaments, indicating the abnormalities in cell division. Moreover, the Ab169 OmpA D268-mediated association to peptidoglycan was required for the manifestation of twitching motility, desiccation resistance, serum-induced killing, adhesion to epithelial cells and virulence in a nematode infection model, although it was dispensable for the uptake of β-lactam antibiotics by outer membrane vesicles. Overall, the results of this study demonstrate that the OmpA C-terminal domain-mediated association to peptidoglycan is critical for a number of virulent properties displayed by A. baumannii outside and within the host.


Author(s):  
Jessica D. Cecil ◽  
Natalie Sirisaengtaksin ◽  
Neil M. O’Brien-Simpson ◽  
Anne Marie Krachler

2017 ◽  
Author(s):  
Laura E. Yates ◽  
Dominic C. Mills ◽  
Matthew P. DeLisa

AbstractBacteria have garnered increased interest in recent years as a platform for the biosynthesis of a variety of glycomolecules such as soluble oligosaccharides, surface-exposed carbohydrates and glycoproteins. The ability to flexibly engineer commonly used laboratory species such asEscherichia colito efficiently synthesize non-native sugar structures by recombinant expression of enzymes from various carbohydrate biosynthesis pathways has allowed for the facile generation of important products such as conjugate vaccines, glycosylated outer membrane vesicles, and a variety of other research reagents for studying and understanding the role of glycans in living systems. This chapter highlights some of the key discoveries and technologies for equipping bacteria with the requisite biosynthetic machinery to generate such products. As the bacterial glyco-toolbox continues to grow, these technologies are expected to expand the range of glycomolecules produced recombinantly in bacterial systems, thereby opening up this platform to an even larger number of applications.


2021 ◽  
Author(s):  
◽  
Euan Russell

<p>Gram-negative bacteria produce outer-membrane vesicles (OMVs) that have biological roles ranging from biofilm formation, modulation of host-cell interactions & delivery of virulence factors. Several studies have shown a role for OMVs to act as intracellular signals to co-ordinate the behaviour of bacteria. This study showed OMVs generated at sub-lethal ciprofloxacin concentrations were capable of programming naïve P. aeruginosa cultures resulting in premature entry into stationary-phase and a significantly lower final culture density reached after 14 hrs. Pyoverdine production was also initiated after 6 hrs in cultures treated with OMVs.  Heat-inactivation of OMVs failed to impede OMV-mediated growth inhibition & pyoverdine production. Chloroform-disruption of OMVs prevented OMV-mediated growth inhibition but did not inhibit OMV-induced pyoverdine production. It is likely that these effects are mediated by multiple signals as opposed to a single mechanism. This suggests that a protein is not responsible for OMV-mediated growth inhibition and an intact OMV lipid bilayer is required. Induction of pyoverdine production is likely due to a lipid (such as a homo-serine lactone) or small molecule present within OMVs.  Preincubation with OMVs for 2-4 hrs resulted in a substantial decrease in the final culture density from cultures that were exposed to OMVs during the course of growth. This suggests that OMV fusion is capable of programming naïve bacteria to set a predetermined division limit on subsequent daughter cells. We coin this as the ‘Dayflick’ limit due to the similarities of the Hayflick limit in eukaryotic cells.  This shows that OMVs act as intercellular messaging vehicles between bacteria that communicate and program naïve bacteria to adapt to the environment under which they were generated in, aiding survival in harsh environments. Further study is needed to determine what OMV components are responsible for initiating these responses and to determine how long the programming is stable.</p>


2020 ◽  
Vol 21 (8) ◽  
pp. 2822 ◽  
Author(s):  
Si Won Kim ◽  
Jung Seok Lee ◽  
Seong Bin Park ◽  
Ae Rin Lee ◽  
Jae Wook Jung ◽  
...  

Gram-negative bacteria have an outer membrane inhibiting the entry of antibiotics. Porins, found within the outer membrane, are involved in regulating the permeability of β-lactam antibiotics. β-lactamases are enzymes that are able to inactivate the antibacterial properties of β-lactam antibiotics. Interestingly, porins and β-lactamase are found in outer membrane vesicles (OMVs) of β-lactam-resistant Escherichia coli and may be involved in the survival of susceptible strains of E. coli in the presence of antibiotics, through the hydrolysis of the β-lactam antibiotic. In this study, OMVs isolated from β-lactam-resistant E. coli and from mutants, lacking porin or β-lactamase, were evaluated to establish if the porins or β-lactamase in OMVs were involved in the degradation of β-lactam antibiotics. OMVs isolated from E. coli deficient in β-lactamase did not show any degradation ability against β-lactam antibiotics, while OMVs lacking OmpC or OmpF showed significantly lower levels of hydrolyzing activity than OMVs from parent E. coli. These data reveal an important role of OMVs in bacterial defense mechanisms demonstrating that the OmpC and OmpF proteins allow permeation of β-lactam antibiotics into the lumen of OMVs, and antibiotics that enter the OMVs can be degraded by β-lactamase.


Resonance ◽  
2015 ◽  
Vol 20 (8) ◽  
pp. 711-725 ◽  
Author(s):  
M. V. Jagannadham ◽  
M. K. Chattopadhyay

Sign in / Sign up

Export Citation Format

Share Document