Rhythmic Wave Patterns on Ambient Pressure Tympanometry in Patients With Objective Tinnitus-associated Pathologies

2020 ◽  
Vol 41 (3) ◽  
pp. e404-e411
Author(s):  
Zahra N. Sayyid ◽  
Anthony Thai ◽  
Austin Swanson ◽  
Davood K. Hosseini ◽  
Matthew B. Fitzgerald ◽  
...  
2020 ◽  
Vol 11 ◽  
Author(s):  
Anthony Thai ◽  
Zahra N. Sayyid ◽  
Davood K. Hosseini ◽  
Austin Swanson ◽  
Yifei Ma ◽  
...  

Author(s):  
Sudeep M. Rao ◽  
Joshua Samuel ◽  
Sai S. Prakash ◽  
C. Jeffrey Brinker

Ambient pressure silica aerogel thin films have recently been prepared by exploiting reversible drying shrinkage caused by derivatization of the internal gel surface. Aerogels have porosities of upto 99.9% and due to the small size of the pores (few nanometers), large capillary stresses are produced in gels that are partially saturated with a wetting liquid. As a result of these capillary stresses, the flexible silica network undergoes strain which has been observed using environmental microscopy. This technique allows variation of the equilibrium vapor pressure and temperature, and a simultaneous monitoring of the deformation of the unconstrained film thickness. We have observed >600% deformation during the pore-filling and pore-emptying cycles. In this presentation, we discuss the unique stress-strain behavior of these films.Ref.: Sai S. Prakash, C. Jeffrey Brinker, Alan J. Hurd & Sudeep M. Rao, "Silica aerogel films prepared at ambient pressure by using surface derivatization to induce reversible drying shrinkage", Nature. Vol. 374, 30 March, 1995, 439-443.


1996 ◽  
Vol 6 (11) ◽  
pp. 1417-1434 ◽  
Author(s):  
Joceline Lega ◽  
Jean-Marc Vince
Keyword(s):  

1983 ◽  
Vol 44 (C3) ◽  
pp. C3-1001-C3-1005
Author(s):  
S. Iwabuchi ◽  
H. Fukuyama

2009 ◽  
Vol 19 (11) ◽  
pp. 997-1012 ◽  
Author(s):  
Jochen Stratmann ◽  
D. Martin ◽  
P. Unterlechner ◽  
R. Kneer

1995 ◽  
Author(s):  
Chan-Hong Chung ◽  
Kenneth D ◽  
Robert Stubbs
Keyword(s):  

2018 ◽  
Author(s):  
Jaya Prakash Madda ◽  
Pilli Govindaiah ◽  
Sushant Kumar Jena ◽  
Sabbhavat Krishna ◽  
Rupak Kishor

<p>Covalent organic Imine polymers with intrinsic meso-porosity were synthesized by condensation reaction between 4,4-diamino diphenyl methane and (para/meta/ortho)-phthaladehyde. Even though these polymers were synthesized from precursors of bis-bis covalent link mode, the bulk materials were micrometer size particles with intrinsic mesoporous enables nitrogen as well as carbon dioxide adsorption in the void spaces. These polymers were showed stability up to 260<sup>o</sup> centigrade. Nitrogen gas adsorption capacity up to 250 cc/g in the ambient pressure was observed with type III adsorption characteristic nature. Carbon dioxide adsorption experiments reveal the possible terminal amine functional group to carbamate with CO<sub>2</sub> gas molecule to the polymers. One of the imine polymers, COP-3 showed more carbon dioxide sorption capacity and isosteric heat of adsorption (Q<sub>st</sub>) than COP-1 and COP-2 at 273 K even though COP-3 had lower porosity for nitrogen gas than COP-1 and COP-2. We explained the trends in gas adsorption capacities and Qst values as a consequence of the intra molecular interactions confirmed by Density Functional Theory computational experiments on small molecular fragments.</p>


Sign in / Sign up

Export Citation Format

Share Document