DETERMINATION OF WET-BULB TEMPERATURE AND RELATIVE HUMIDITY OF REDUCED AMBIENT PRESSURE ENVIRONMENT: COMPUTER SIMULATION AND RAINBOW THERMOMETRY VALIDATION

Author(s):  
Parida Losangwal ◽  
Pumyos Vallikul ◽  
Songrit Tanchatchawan
2016 ◽  
Vol 22 (8) ◽  
pp. S43-S44
Author(s):  
Ying Sun ◽  
Toby Steinberg ◽  
Jeremy Rier ◽  
Stewart Benton ◽  
Daniel Steinberg ◽  
...  

2020 ◽  
Vol 62 (10) ◽  
pp. 1033-1040
Author(s):  
Christoph Strangfeld ◽  
Sabine Kruschwitz

Abstract The moisture content of the subfloor has to be determined before installation to avoid damage to the floor covering. Only if readiness for layering is reached, can an installation without damage be expected in all cases. In general, three approaches exist to measure residual water content: determination of moisture content, determination of water release, or determination of the corresponding relative humidity. All three approaches are tested under laboratory conditions at eight screed types including two samples thicknesses in each case. Moisture content and water release are measured by sample weighing, the corresponding relative humidity is measured by embedded sensors. All three approaches are compared and correlated. The evaluations show only a weak correlation and, in several cases, contradicting results. Samples are considered ready for layering and not ready for layering at the same time, depending on the chosen approach. Due to these contradicting results, a general threshold for a risk of damage cannot be derived based on these measurements. Furthermore, the experiment demonstrates that the measurement of corresponding relative humidity is independent of the screed type or screed composition considered. This makes humidity measurement a potentially very promising approach for the installation of material moisture monitoring systems.


2001 ◽  
Author(s):  
J. H. Lau ◽  
C. L. Jiaa ◽  
S. J. Erasmus

Abstract The corrosion responses of a fiber-optic transceiver’s housing with zinc alloy die casting material are investigated in this study. Emphasis is placed on the determination of the weight change and corrosion rate of the housing when it is subjected to a 85% relative humidity and 85°C temperature (85%RH/85°C) test condition. Also, the average light optical power, receiver sensitivity, extinction ratio, and mask margin of transceiver modules subjected to 85%RH/85°C and 3.47V at 500, 1000, 1500, and 1600 hours are provided. Furthermore, metallography is performed on the surfaces and cross sections of the housing. Finally, measurements are made of the thickness of the oxide layer on the surfaces of the fiber-optic transceiver housing.


Sign in / Sign up

Export Citation Format

Share Document