Splenic stiffness measurement: need for technical standardization

2021 ◽  
Vol 33 (4) ◽  
pp. 595-596
Author(s):  
Rishi Bolia ◽  
Vikrant Sood
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Guanlin Wu ◽  
Michael Gotthardt ◽  
Maik Gollasch

An amendment to this paper has been published and can be accessed via a link at the top of the paper.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Maliheh Hadizadeh ◽  
Greg Kawchuk ◽  
Simon French

Abstract Background Spinal stiffness assessment has the potential to become an important clinical measure. Various spinal stiffness-testing devices are available to help researchers objectively evaluate the spine and patient complaints. One of these is VerteTrack, a device capable of measuring posteroanterior displacement values over an entire spinal region. This study aimed to develop a best-practice protocol for evaluating spinal stiffness in human participants using VerteTrack. Methods Twenty-five individuals with research experience in measuring spinal stiffness, or who were trained in spinal stiffness measurement using the VerteTrack device, were invited to participate in this 3-Round Delphi study. Answers to open-ended questions in Round 1 were thematically analyzed and translated into statements about VerteTrack operation for spinal stiffness measurements. Participants then rated their level of agreement with these statements using a 5-point Likert scale in Rounds 2 and 3. A descriptive statistical analysis was performed. Consensus was achieved when at least 70% of the participants either strongly agreed, agreed, (or strongly disagreed, disagreed) to include a statement in the final protocol. Results Twenty participants completed Round 1 (80%). All these participants completed Rounds 2 and 3. In total, the pre-defined consensus threshold was reached for 67.2% (123/183) of statements after three rounds of surveys. From this, a best-practice protocol was created. Conclusions Using a Delphi approach, a consensus-based protocol for measuring spinal stiffness using the VerteTrack was developed. This standard protocol will help to improve the accuracy, efficiency, and safety of spinal stiffness measurements, facilitate the training of new operators, increase consistency of these measurements in multicenter studies, and provide the synergy and potential for data comparison between spine studies internationally. Although specific to VerteTrack, the resulting standard protocol could be modified for use with other devices designed to collect spinal stiffness measures.


Geophysics ◽  
2014 ◽  
Vol 79 (3) ◽  
pp. L21-L32 ◽  
Author(s):  
Nishank Saxena ◽  
Gary Mavko

We derived exact equations, elastic bulk and shear, for fluid and solid substitution in monomineralic isotropic rocks of arbitrary pore shape and suggested methods to obtain the required substitution parameters. We proved that the classical Gassmann’s bulk modulus equation for fluid-to-fluid substitution is exact for solid-to-solid substitution if compression-induced mean stresses (pressure) in initial and final pore solids are homogeneous and either the shear modulus of the substituted solid does not change or no shear stress is induced in pores. Moreover, when compression-induced mean stresses in initial and final pore solids are homogeneous, we evaluated exact generalizations of Gassmann’s bulk modulus equation, which depend on usually known parameters. For the effective shear modulus, we found general exactness conditions of Gassmann and other approximations. Using the new exact substitution equations, we interpreted that predicting solid-filled rock stiffness from a dry rock stiffness measurement requires more information (i.e., assumptions about the pore shape) compared to predicting the same from a fluid-saturated rock stiffness.


2018 ◽  
Vol 154 (6) ◽  
pp. S-536
Author(s):  
Ali Bahari ◽  
Azita Ganji ◽  
Abbas Esmaeelzadeh ◽  
Mahmood Hoseynian

Sign in / Sign up

Export Citation Format

Share Document