Exact equations for fluid and solid substitution

Geophysics ◽  
2014 ◽  
Vol 79 (3) ◽  
pp. L21-L32 ◽  
Author(s):  
Nishank Saxena ◽  
Gary Mavko

We derived exact equations, elastic bulk and shear, for fluid and solid substitution in monomineralic isotropic rocks of arbitrary pore shape and suggested methods to obtain the required substitution parameters. We proved that the classical Gassmann’s bulk modulus equation for fluid-to-fluid substitution is exact for solid-to-solid substitution if compression-induced mean stresses (pressure) in initial and final pore solids are homogeneous and either the shear modulus of the substituted solid does not change or no shear stress is induced in pores. Moreover, when compression-induced mean stresses in initial and final pore solids are homogeneous, we evaluated exact generalizations of Gassmann’s bulk modulus equation, which depend on usually known parameters. For the effective shear modulus, we found general exactness conditions of Gassmann and other approximations. Using the new exact substitution equations, we interpreted that predicting solid-filled rock stiffness from a dry rock stiffness measurement requires more information (i.e., assumptions about the pore shape) compared to predicting the same from a fluid-saturated rock stiffness.

Based on the perturbation solution, we derive new bounds on the effective moduli of a two-component composite material which are exact up to fourth order in δ μ = μ 1 — μ 2 and δ K = K 1 — K 2 , where μ i and K i , i = 1, 2, are the shear and bulk modulus, respectively, of the phases. The bounds on the effective bulk modulus involve three microstructural parameters whereas eight parameters are needed in the bounds on the effective shear modulus. For engineering calculations, we recommend the third-order bounds on the effective shear modulus which require only two geometrical parameters. We show in detail how Hashin-Shtrikman’s bounds can be extended and how Walpole’s bounds can be improved using two inequalities on the two geometrical parameters that appear in the third-order bounds on the effective shear modulus. The third- and fourth-order bounds on the effective moduli are shown to be more restrictive than, or at worst, coincident with, existing bounds due to Hashin and Shtrikman, McCoy, Beran and Molyneux and Walpole.


2003 ◽  
Vol 125 (5) ◽  
pp. 615-619 ◽  
Author(s):  
Todd C. Battaglia ◽  
An-Chi Tsou ◽  
Emerson A. Taylor ◽  
Borjana Mikic

The purpose of this study was to evaluate the effects of isolated alterations in mineral content on mouse bone torsional properties. The femora and tibiae from 25 eight-week-old male A/J strain mice were divided into five groups and selectively decalcified from 5% to 20%. The right femora were then tested to failure in torsion while the tibiae were ashed to determine final mineral content of the decalcified bones. Contralateral femora were serially cross-sectioned to determine geometric properties, and effective material properties were then calculated from the geometric and structural properties of each femoral pair. We found that the relationship between ash content and effective shear modulus or maximum effective shear stress could best be characterized through a power law, with an exponential factor of 6.79 R2=0.85 and 4.04 R2=0.67, respectively. This indicates that in a murine model, as with other species, small changes in ash content significantly influence effective material properties. Furthermore, it appears that (in adolescent A/J strain mice) effective shear modulus is more heavily affected by changes in mineralization than is maximum effective shear stress when these properties are derived from whole bone torsional tests to failure.


2013 ◽  
Vol 35 (4) ◽  
pp. 275-283
Author(s):  
Vu Lam Dong ◽  
Pham Duc Chinh

In our previous paper, we constructed bounds on the effective bulk modulus of isotropic multicomponent composites using minimum energy principles and modified Hashin-Shtrikman polarization trial fields. In this paper, following the variational approach, we construct more sophisticated bounds on the effective shear modulus. Applications to particular models are presented.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
O. N. Senkov ◽  
D. B. Miracle

AbstractTwo classical criteria, by Pugh and Pettifor, have been widely used by metallurgists to predict whether a material will be brittle or ductile. A phenomenological correlation by Pugh between metal brittleness and its shear modulus to bulk modulus ratio was established more than 60 years ago. Nearly four decades later Pettifor conducted a quantum mechanical analysis of bond hybridization in a series of intermetallics and derived a separate ductility criterion based on the difference between two single-crystal elastic constants, C12–C44. In this paper, we discover the link between these two criteria and show that they are identical for materials with cubic crystal structures.


Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2010
Author(s):  
Shuo Wang ◽  
Yuhong Zhao ◽  
Huijun Guo ◽  
Feifei Lan ◽  
Hua Hou

In this paper, the mechanical properties and minimum thermal conductivity of ZnZr, Zn2Zr, Zn2Zr3, and MgZn2 are calculated from first principles. The results show that the considered Zn-Zr intermetallic compounds are effective strengthening phases compared to MgZn2 based on the calculated elastic constants and polycrystalline bulk modulus B, shear modulus G, and Young’s modulus E. Meanwhile, the strong Zn-Zr ionic bondings in ZnZr, Zn2Zr, and Zn2Zr3 alloys lead to the characteristics of a higher modulus but lower ductility than the MgZn2 alloy. The minimum thermal conductivity of ZnZr, Zn2Zr, Zn2Zr3, and MgZn2 is 0.48, 0.67, 0.68, and 0.49 W m−1 K−1, respectively, indicating that the thermal conductivity of the Mg-Zn-Zr alloy could be improved as the precipitation of Zn atoms from the α-Mg matrix to form the considered Zn-Zr binary alloys. Based on the analysis of the directional dependence of the minimum thermal conductivity, the minimum thermal conductivity in the direction of [110] can be identified as a crucial short limit for the considered Zn-Zr intermetallic compounds in Mg-Zn-Zr alloys.


BioResources ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. 3200-3213
Author(s):  
Wei Wang ◽  
Yancai Cao ◽  
Liyue Sun ◽  
Mingshuai Wu

A formaldehyde-cellulose amorphous region model at the micro-level was established using the molecular dynamics software Materials Studio to simulate the change of cellulose and formaldehyde molecules in an external temperature field. The diffusion coefficients of formaldehyde molecules increased as the temperature increased. Moreover, the total number of hydrogen bonds decreased, and the interaction energy in the formaldehyde-cellulose model was reduced, which confirmed this conclusion and indicated that temperature increase could enhance the diffusion of formaldehyde in cellulose. The mechanical parameters of cellulose were analyzed in terms of Young’s modulus, shear modulus, bulk modulus, Poisson’s ratio, and the ratio of bulk modulus to shear modulus (K/G), which were affected by the temperature. The elastic modulus (E, G, and K) of cellulose decreased as the temperature increased, while the Poisson’s ratio V and K/G values increased. The results of the research explain how elevated temperature can promote the release of formaldehyde in furniture from a microscopic perspective, which supports each other with the results of previous experimental data and practical applications in production.


1977 ◽  
Vol 99 (2) ◽  
pp. 181-184 ◽  
Author(s):  
D. T. Read ◽  
H. M. Ledbetter

Elastic properties of precipitation-hardened aluminum alloys 2014 and 2219 were studied between 4 and 300 K using ultrasonic pulse techniques. Both the longitudinal and transverse sound velocities were measured. Also reported are the Young’s modulus, shear modulus, bulk modulus, and Poisson’s ratio. For both alloys, the Young’s moduli are about ten percent higher than for unalloyed aluminum, and they increase about ten percent on cooling from 300 to 4 K. All the elastic constants show normal temperature dependence.


Sign in / Sign up

Export Citation Format

Share Document