scholarly journals Implementing Live Virtual Surgery in the COVID Era: Overcoming Medicolegal, Technical, and Educational Hurdles

2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Jacob Dinis ◽  
Adnan Prsic ◽  
Alexandra Junn ◽  
Henry Hsia ◽  
Michael Alperovich
Keyword(s):  
2020 ◽  
Vol 38 (9A) ◽  
pp. 1276-1282
Author(s):  
Nabeel I. Allawy ◽  
Amjad B. Abdulghafour

Reconstruction of the mandible after severe trauma is one of the most difficult challenges facing oral and maxillofacial surgery. The mandible is an essential element in the appearance of the human face that gives the distinctive shape of the face, holds. This paper aims to propose a methodology that allows the surgeon to perform virtual surgery by investing engineering programs to place the implant by default and with high accuracy within the mandible based on the patient's medical data. The current study involved a 35-year-old man suffering from a traffic accident in the mandible with multiple fractures of the facial bones. Basically, an identification of the steps required to perform virtual surgery and modeling images from the CBCT technology has been done by using the software proposed in the research. The implant model is designed as a mesh model, allowing the patient to return to a normal position. Moreover, an application of FEA procedures using the Solidworks simulation software to test and verify the mechanical properties of the final transplant.


HNO ◽  
2021 ◽  
Author(s):  
I. Seiwerth ◽  
S. Schilde ◽  
C. Wenzel ◽  
T. Rahne ◽  
S. K. Plontke

2021 ◽  
pp. 1-16
Author(s):  
Dan Luo ◽  
Yu Zhang ◽  
Jia Li ◽  
Jisheng Li

Virtual surgery robot can accurately modeling of surgical instruments and human organs, and realistic simulation of various surgical phenomena such as deformation of organic tissues, surgery simulation system can provide operators with reusable virtual training and simulation environment. To meet the requirement of virtual surgery robot for the authenticity and real-time of soft tissue deformation and surgical simulation in liver surgery, a new method is proposed to simulate the deformation of soft tissue. This method combines the spring force, the external force of the system, and the constraint force produced by the constraint function of the position-based dynamics. Based on the position-based dynamics, an improved three-parameter mass-spring model is added. In the calculation of the elastic force, the nonlinearity and viscoelasticity of the soft tissue are introduced, and the joint force of the constraint projection process and the constraint force of the position-based dynamics is used to modify mass points movement. The method of position-based dynamics based on biological characteristics, not only considers the biomechanical properties of biological soft tissue as an organic polymer such as viscoelasticity, nonlinearity, and incompressibility but also retains the rapidity and stability of the position based dynamic method. Through the simulation data, the optimal side length of tetrahedral mesh in the improved three-parameter model is obtained, and the physical properties of the model are proved. The real-time simulation of the liver and other organs is completed by using the Geomagic touch force feedback device, which proves the practicability and effectiveness of this method.


2009 ◽  
Vol 5 (3) ◽  
pp. 341-353 ◽  
Author(s):  
Anderson Maciel ◽  
Tansel Halic ◽  
Zhonghua Lu ◽  
Luciana P. Nedel ◽  
Suvranu De

2010 ◽  
Vol 9 (3) ◽  
pp. 1-7 ◽  
Author(s):  
Jing Qin ◽  
Kup-Sze Choi ◽  
Wai-Man Pang ◽  
Zhang Yi ◽  
Pheng-Ann Heng

While considerable effort has been dedicated to improve medical education with virtual reality based surgical simulators, relatively little attention is given to the simulation of the collaborative procedures in distributed environments. In this paper, we first present a literature review of techniques involved in the development of collaborative simulators, including network architecture, transmission protocol, collaboration mechanism, schedule algorithm, collaborative user-interaction feature and haptic communication. We introduce the details of each technique and discuss the advantages and drawbacks. Then, we review some of the existing applications to illustrate how to apply these techniques to implement an efficient and robust collaborative simulator. Finally, we discuss the challenges that need to be addressed in the future.


2011 ◽  
Vol 128 (5) ◽  
pp. 1080-1084 ◽  
Author(s):  
Anuja K. Antony ◽  
Wei F. Chen ◽  
Antonia Kolokythas ◽  
Katherine A. Weimer ◽  
Mimis N. Cohen

Sign in / Sign up

Export Citation Format

Share Document