scholarly journals Head Ultrasound Resistive Indices Are Associated With Brain Injury on Diffusion Tensor Imaging Magnetic Resonance Imaging in Neonates With Hypoxic-Ischemic Encephalopathy

2020 ◽  
Vol 44 (5) ◽  
pp. 687-691
Author(s):  
Elizabeth J. Snyder ◽  
Jamie Perin ◽  
Raul Chavez-Valdez ◽  
Frances J. Northington ◽  
Jennifer K. Lee ◽  
...  
2018 ◽  
Vol 12 (1) ◽  
pp. 55-65 ◽  
Author(s):  
Kyle A. Jisa ◽  
Dillon D. Clarey ◽  
Eric S. Peeples

Background:Neonatal hypoxic-ischemic encephalopathy is brain injury caused by decreased perfusion and oxygen delivery that most commonly occurs in the context of delivery complications such as umbilical cord compression or placental abruption. Imaging is a key component for guiding treatment and prediction of prognosis, and the most sensitive clinical imaging modality for the brain injury patterns seen in hypoxic-ischemic encephalopathy is magnetic resonance imaging.Objective:The goal of this review is to compare magnetic resonance imaging findings demonstrated in the available animal models of hypoxic-ischemic encephalopathy to those found in preterm (≤ 36 weeks) and term (>36 weeks) human neonates with hypoxic-ischemic encephalopathy, with special attention to the strengths and weaknesses of each model.Methods:A structured literature search was performed independently by two authors and the results of the searches were compiled. Animal model, human brain age equivalency, mechanism of injury, and area of brain injury were recorded for comparison to imaging findings in preterm and term human neonates with hypoxic-ischemic encephalopathy.Conclusion:Numerous animal models have been developed to better elicit the expected findings that occur after HIE by allowing investigators to control many of the clinical variables that result in injury. Although modeling the same disease process, magnetic resonance imaging findings in the animal models vary with the species and methods used to induce hypoxia and ischemia. The further development of animal models of HIE should include a focus on comparing imaging findings, and not just pathologic findings, to human studies.


2011 ◽  
Vol 159 (5) ◽  
pp. 731-735.e1 ◽  
Author(s):  
Hannah C. Glass ◽  
Kendall B. Nash ◽  
Sonia L. Bonifacio ◽  
A. James Barkovich ◽  
Donna M. Ferriero ◽  
...  

2021 ◽  
Vol 22 (10) ◽  
pp. 5216
Author(s):  
Koji Kamagata ◽  
Christina Andica ◽  
Ayumi Kato ◽  
Yuya Saito ◽  
Wataru Uchida ◽  
...  

There has been an increasing prevalence of neurodegenerative diseases with the rapid increase in aging societies worldwide. Biomarkers that can be used to detect pathological changes before the development of severe neuronal loss and consequently facilitate early intervention with disease-modifying therapeutic modalities are therefore urgently needed. Diffusion magnetic resonance imaging (MRI) is a promising tool that can be used to infer microstructural characteristics of the brain, such as microstructural integrity and complexity, as well as axonal density, order, and myelination, through the utilization of water molecules that are diffused within the tissue, with displacement at the micron scale. Diffusion tensor imaging is the most commonly used diffusion MRI technique to assess the pathophysiology of neurodegenerative diseases. However, diffusion tensor imaging has several limitations, and new technologies, including neurite orientation dispersion and density imaging, diffusion kurtosis imaging, and free-water imaging, have been recently developed as approaches to overcome these constraints. This review provides an overview of these technologies and their potential as biomarkers for the early diagnosis and disease progression of major neurodegenerative diseases.


Sign in / Sign up

Export Citation Format

Share Document