scholarly journals In Vivo Aortic Magnetic Resonance Elastography in Abdominal Aortic Aneurysm

2020 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Huiming Dong ◽  
Duncan S. Russell ◽  
Alan S. Litsky ◽  
Matthew E. Joseph ◽  
Xiaokui Mo ◽  
...  
2016 ◽  
Vol 64 (4) ◽  
pp. 966-974 ◽  
Author(s):  
Arunark Kolipaka ◽  
Venkata Sita Priyanka Illapani ◽  
William Kenyhercz ◽  
Joshua D. Dowell ◽  
Michael R. Go ◽  
...  

VASA ◽  
2020 ◽  
pp. 1-9
Author(s):  
Milos Sladojevic ◽  
Petar Zlatanovic ◽  
Zeljka Stanojevic ◽  
Igor Koncar ◽  
Sasenka Vidicevic ◽  
...  

Summary: Background: Main objective of this study was to evaluate the influence of statins and/or acetylsalicylic acid on biochemical characteristics of abdominal aortic aneurysm (AAA) wall and intraluminal thrombus (ILT). Patients and methods: Fifty patients with asymptomatic infrarenal AAA were analyzed using magnetic resonance imaging on T1w sequence. Relative ILT signal intensity (SI) was determined as a ratio between ILT and psoas muscle SI. Samples containing the full ILT thickness and aneurysm wall were harvested from the anterior surface at the level of the maximal diameter. The concentration of enzymes such as matrix metalloproteinase (MMP) 9, MMP2 and neutrophil elastase (NE/ELA) were analyzed in ILT and AAA wall; while collagen type III, elastin and proteoglycan 4 were analyzed in harvested AAA wall. Oxidative stress in the AAA wall was assessed by catalase and malondialdehyde activity in tissue samples. Results: Relative ILT signal intensity (1.09 ± 0.41 vs 0.89 ± 0.21, p = 0.013) were higher in non-statin than in statin group. Patients who were taking aspirin had lower relative ILT area (0.89 ± 0.19 vs 1.13. ± 0.44, p = 0.016), and lower relative ILT signal intensity (0.85 [0.73–1.07] vs 1.01 [0.84–1.19], p = 0.021) compared to non-aspirin group. There were higher concentrations of elastin in AAA wall among patients taking both of aspirin and statins (1.21 [0.77–3.02] vs 0.78 (0.49–1.05) ng/ml, p = 0.044) than in patients who did not take both of these drugs. Conclusions: Relative ILT SI was lower in patients taking statin and aspirin. Combination of antiplatelet therapy and statins was associated with higher elastin concentrations in AAA wall.


Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Dawn A Savio ◽  
Anita R Halpern ◽  
Yuchuan Wu ◽  
Wei Li ◽  
Joseph Sypek ◽  
...  

Abdominal aortic aneurysm (AAA) is an inflammatory disorder characterized by local connective tissue degradation, macrophage recruitment and infiltration leading to aortic dilation and rupture. Aneurysms of the abdominal aorta represent a significant cardiovascular risk for which inflammation plays an integral role in the defined pathology. Genetic ablation of metalloprotease-12 (MMP-12) eliminates metalloelastase activity and attenuates aneurysm formation in apoE−/− mice. In the current study, a selective MMP-12 inhibitor, WAY-644 was evaluated in the well-established murine model of ANGII-induced aneurysm formation. This inhibitor displays activity for murine MMP-12, IC50 = 6.3 nM by FRET analysis, with low crossreactivity for other MMPs (exception MMP-8), and has established in vivo efficacy in inflammation models. Coadministration of WAY-644 to hyperlipidemic apoE−/− mice during ANGII infusion (1.44 mg/kg) for 28d alters the severity of AngII-induced AAAs as measured by changes in abdominal aortic wet weights and typical AAA classification. As expected, plasma MMP-12 protease activity measured by FRET analysis was inhibited. RNA profiling of abdominal aortic aneurysm tissue characterizes ANGII-induced AAA expansion driven by macrophage infiltration, destructive MMP production and attenuation by MMP-12 inhibition. The transcription of a subset of proinflammatory genes activated with ANGII treatment was repressed by the inhibitor. These genes include quantitative markers of macrophage accumulation in the vessel wall, CD68, MCP1/CCL2, CCR2, MMP-12, and Csf1. Associated reductions in gene markers for inflammation and oxidative stress, ie., heme oxidase (HO), nitric oxide synthase (nos2), Ikbkb, and Stat3 also correlate with MMP-12 antagonism. These changes occur in the absence of lipid changes (TC or TG), or quantitative changes in aortic arch lesions in the ANGII-infused animals. The findings support a mechanism whereby MMP-12 metalloelastase inactivation reduces macrophage recruitment to aneurysmal lesion sites, to lessen activated-macrophage expression of proinflammatory cytokines that figure prominently in vascular wall destruction and the pathogenesis of AAAs.


2020 ◽  
Vol 21 (17) ◽  
pp. 6334
Author(s):  
Rijan Gurung ◽  
Andrew Mark Choong ◽  
Chin Cheng Woo ◽  
Roger Foo ◽  
Vitaly Sorokin

Abdominal aortic aneurysm (AAA) refers to the localized dilatation of the infra-renal aorta, in which the diameter exceeds 3.0 cm. Loss of vascular smooth muscle cells, degradation of the extracellular matrix (ECM), vascular inflammation, and oxidative stress are hallmarks of AAA pathogenesis and contribute to the progressive thinning of the media and adventitia of the aortic wall. With increasing AAA diameter, and left untreated, aortic rupture ensues with high mortality. Collective evidence of recent genetic and epigenetic studies has shown that phenotypic modulation of smooth muscle cells (SMCs) towards dedifferentiation and proliferative state, which associate with the ECM remodeling of the vascular wall and accompanied with increased cell senescence and inflammation, is seen in in vitro and in vivo models of the disease. This review critically analyses existing publications on the genetic and epigenetic mechanisms implicated in the complex role of SMCs within the aortic wall in AAA formation and reflects the importance of SMCs plasticity in AAA formation. Although evidence from the wide variety of mouse models is convincing, how this knowledge is applied to human biology needs to be addressed urgently leveraging modern in vitro and in vivo experimental technology.


Author(s):  
A. Dupay ◽  
P. Snyder ◽  
W. Lee ◽  
S. Baek

For an abdominal aortic aneurysm (AAA) in vivo there are multiple tissues contacting its boundary, none of which have been fully considered for their effect throughout disease progression. Trends such as arterial asymmetry, surface curvature flattening, and arterial tortuosity could be significantly influenced by both surrounding tissue and hemodynamic factors. In order to quantify either the combined or separate influence of such factors during disease progression a precise characterization of aneurysm geometry evolution is needed. Multiple methods for geometrical parameterization of abdominal aortic aneurysms (AAAs) have been previously developed using isolated patient CT scan data but the focus has been mainly on the association of such geometrical parameters with the rupture risk and the efficacy of the parameterization is not fully investigated for a longitudinal study yet (multiple CT scans per patient at progressive intervals) [1]. For this study we have produced a series of 3D models for AAAs in longitudinal studies, developed an arterial centerline generation algorithm, and automated a geometric parameterization procedure for the arterial surfaces. It should be noted that the caliber of our collection of data is relatively rare as it is high resolution, features many patients, and on average has 4–5 images per patient.


2012 ◽  
Vol 23 (11) ◽  
pp. 1529-1536 ◽  
Author(s):  
Yonghua Bi ◽  
Ke Xu ◽  
Hongshan Zhong ◽  
Xun Qi ◽  
Zhen Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document