scholarly journals Microparticles formed during storage of red blood cell units support thrombin generation

2018 ◽  
Vol 84 (4) ◽  
pp. 598-605 ◽  
Author(s):  
Beth A. Bouchard ◽  
Thomas Orfeo ◽  
Hollis N. Keith ◽  
Elizabeth M. Lavoie ◽  
Matthew Gissel ◽  
...  
Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 923-923
Author(s):  
Patrick C. Hines ◽  
Xiufeng Gao ◽  
Andrew Herppich ◽  
Wendy Hollon ◽  
Meera B. Chitlur ◽  
...  

Abstract Introduction Pyruvate Kinase Deficiency (PKD) is an inherited glycolytic enzymopathy that is characterized by a life-long chronic hemolytic anemia with severe comorbidities. Hypercoagulability due to increased platelet activity caused by nitric oxide sequestration by cell free hemoglobin has been well-described not just in PKD, but in other hemolytic anemias as well, such as e.g., sickle cell disease (SCD). Hypercoagulability is often accompanied by a cascade of pathophysiological events leading to cell oxidative damage, endothelial activation, and changes in both cell stability and adhesive properties. Increased red blood cell (RBC) adhesion and hypercoagulability may impair microvascular blood flow. Despite these well-recognized rheological changes that are similar to those that occur in other hemolytic anemias, the relationship between baseline erythrocyte adhesion and thrombosis potential have not been well-studied in PKD. Methods 10 PKD subjects and 5 healthy controls were recruited under the IRB-approved protocol from Wayne State University. Flow adhesion of whole blood to vascular cell adhesion molecule-1 (FA-WB-VCAM) was performed by flowing whole blood (1:1 dilution) through a microfluidic channel for 3 minutes (1 dyne/cm 2 shear stress, 1.67Hz pulse frequency). Flow adhesion avidity of the whole blood sample to VCAM-1 (FAAv-WB-VCAM), representing the strength of the RBC-VCAM-1 adhesive interactions, was assessed by quantifying adhesion following sequential increase in shear (5, 10, 20 dyne/cm 2). Thrombin generation assay was conducted using platelet poor plasma with and without thrombomodulin and microparticles (MP) as previously published [1]. Clotting time - reported as lag time (LT), time to peak (ttPeak) and peak height (velocity and amount of net thrombin production), and endogenous thrombin potential (ETP), representing number of substrates potentially convertible by thrombin, were measured. Significance was at p < 0.05. Results FA-WB-VCAM at baseline sample hematocrit was significantly elevated (Figure 1) in PKD subjects (808±377 cells/mm², n=10) compared to healthy controls (6±4 cells/mm², n=4) and even to our previously reported steady state levels in sickle cell samples (290±50 cells/mm² [2]. Thrombin generation profiles were similar between PKD subjects and healthy controls with the exception of the thrombin generation index (PPP+TP/PPP)*100ETP that was significantly (p<<0.01) elevated in citrated plasma of PKD subjects (92.9±6.8) as compared to healthy controls (68.6±11.9). For PKD subjects, FA-WB-VCAM correlated significantly with platelet counts (R²=0.81, p<0.05), and FAAv-WB-VCAM was negatively correlated with platelet (P=0.03, R 2=0.5), but not with erythrocyte-derived microparticles (MP). Platelet-derived MP strongly correlated with thrombin generation (ETP, p<0.01, R 2=0.76) but not with LT or ttPeak of thrombin generation. Red blood cell MP were significantly (p=0.02) decreased in splenectomized patients (200±170, n=7) vs. non-splenectomized subjects (2090±1860, n=3). LT and ttPeak were significantly longer in PKD subjects with thrombosis history than without. Conclusions PKD subjects in this study had elevated RBC adhesive properties similar to that observed in SCD, confirming that pathologic RBC membrane damage resulting in increased adhesion is a common feature of hemolytic anemias. The hemoglobin level of 7.8±1.1 g/dL (mean±SD) for PKD patients was within 6 to 11 g/dl range of hemoglobin levels typical for SCD. There was no significant difference in any other measured parameters (thrombin generation, adhesion avidity, microparticles data). Thrombin generation in PKD subjects was not consistent with hypercoagulability. Based on these observations, pathologic RBC adhesion may be both a novel a mechanism driving hypercoagulability in individuals with PKD. Further studies to determine whether RBC-modifying therapies may decrease thrombosis risk in PKD are warranted. 1. Zia A, Callaghan MU, Callaghan JH, et al. Hypercoagulability in adolescent girls on oral contraceptives - global coagulation profile and estrogen receptor polymorphisms. Am J Hematol, 2015;90:725-31 2. Pittman DD, Hines PC, Beidler D, et al. Evaluation of Longitudinal Pain Study in Sickle Cell Disease (ELIPSIS) by patient-reported outcomes, actigraphy, and biomarkers. Blood. 2021;137(15):2010-20 Figure 1 Figure 1. Disclosures Hines: Functional Fluidics: Current holder of stock options in a privately-held company. Gao: Functional Fluidics: Current Employment. Herppich: Functional Fluidics: Ended employment in the past 24 months. Kwiatkowski: Imara: Consultancy, Research Funding; Agios Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees; Sangamo: Research Funding; Bioverativ: Research Funding; Vertex: Research Funding; Silence Therapeutics: Consultancy; bluebird bio: Consultancy, Research Funding; Bristol Myers Squibb: Membership on an entity's Board of Directors or advisory committees; Chiesi: Research Funding; CRISPR: Research Funding. Tarasev: Functional Fluidics: Current holder of stock options in a privately-held company.


Author(s):  
Laura Delvasto-Núñez ◽  
Dorina Roem ◽  
Kamran Bakhtiari ◽  
Gerard van Mierlo ◽  
Joost C. M. Meijers ◽  
...  

AbstractHemolytic disorders characterized by complement-mediated intravascular hemolysis, such as autoimmune hemolytic anemia and paroxysmal nocturnal hemoglobinuria, are often complicated by life-threatening thromboembolic complications. Severe hemolytic episodes result in the release of red blood cell (RBC)-derived proinflammatory and oxidatively reactive mediators (e.g., extracellular hemoglobin, heme, and iron) into plasma. Here, we studied the role of these hemolytic mediators in coagulation activation by measuring factor Xa (FXa) and thrombin generation in the presence of RBC lysates. Our results show that hemolytic microvesicles (HMVs) formed during hemolysis stimulate thrombin generation through a mechanism involving FVIII and FIX, the so-called intrinsic tenase complex. Iron scavenging during hemolysis using deferoxamine decreased the ability of the HMVs to enhance thrombin generation. Furthermore, the addition of ferric chloride (FeCl3) to plasma propagated thrombin generation in a FVIII- and FIX-dependent manner suggesting that iron positively affects blood coagulation. Phosphatidylserine (PS) blockade using lactadherin and iron chelation using deferoxamine reduced intrinsic tenase activity in a purified system containing HMVs as source of phospholipids confirming that both PS and iron ions contribute to the procoagulant effect of the HMVs. Finally, the effects of FeCl3 and HMVs decreased in the presence of ascorbate and glutathione indicating that oxidative stress plays a role in hypercoagulability. Overall, our results provide evidence for the contribution of iron ions derived from hemolytic RBCs to thrombin generation. These findings add to our understanding of the pathogenesis of thrombosis in hemolytic diseases.


Transfusion ◽  
2012 ◽  
Vol 53 (8) ◽  
pp. 1744-1754 ◽  
Author(s):  
Olivier Rubin ◽  
Julien Delobel ◽  
Michel Prudent ◽  
Niels Lion ◽  
Kid Kohl ◽  
...  

Transfusion ◽  
2009 ◽  
Vol 49 (8) ◽  
pp. 1569-1579 ◽  
Author(s):  
Joseph Sweeney ◽  
Nicola Kouttab ◽  
Jonathan Kurtis

Author(s):  
Laura Delvasto ◽  
Dorina Roem ◽  
Kamran Bakhtiari ◽  
Gerard J. van Mierlo ◽  
Joost Meijers ◽  
...  

Hemolytic disorders characterized by complement-mediated intravascular hemolysis, such as autoimmune hemolytic anemia and paroxysmal nocturnal hemoglobinuria, are often complicated by life-threatening thromboembolic complications. Severe hemolytic episodes result in the release of red blood cell (RBC)-derived pro-inflammatory and oxidatively reactive mediators (e.g. extracellular hemoglobin, heme and iron) into plasma. Here, we studied the role of these hemolytic mediators in coagulation activation by measuring FXa and thrombin generation in the presence of RBC lysates. Our results show that hemolytic microvesicles (HMVs) formed during hemolysis stimulate thrombin generation through a mechanism involving FVIII and FIX, the so-called intrinsic tenase complex. Iron scavenging during hemolysis using deferoxamine decreased the ability of the HMVs to enhance thrombin generation. Furthermore, the addition of ferric chloride (FeCl3) to plasma propagated thrombin generation in a FVIII and FIX-dependent manner suggesting that iron positively affects blood coagulation. Phosphatidylserine (PS) blockade using lactadherin and iron chelation using deferoxamine reduced intrinsic tenase activity in a purified system containing HMVs as source of phospholipids confirming that both PS and iron ions contribute to the procoagulant effect of the HMVs. Finally, the effects of FeCl3 and HMVs decreased in the presence of ascorbate and glutathione indicating that oxidative stress plays a role in hypercoagulability. Overall, our results provide evidence for the contribution of iron ions derived from hemolytic RBCs to thrombin generation. These findings add to our understanding of the pathogenesis of thrombosis in hemolytic diseases.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3240-3240
Author(s):  
Michael W Henderson ◽  
Matthew Karafin ◽  
Anton Ilich ◽  
Nigel S Key

Abstract Background: Hypotensive transfusion reactions are adverse events typified by a sudden decrease in blood pressure that usually occurs within the first minutes after the initiation of a transfusion and resolves shortly after the transfusion is stopped. Due to current passive reporting practices, the incidence is likely underreported, but recent studies estimate an incidence of 1.3 cases per 10000 RBC units. The pathophysiology of these reactions are not fully understood. One hypothesis proposed is that increased bradykinin (BK), a nonapeptide released from cleavage of high molecular weight kininogen (HK), as seen with the use of negatively charged leukoreduction filters and the use of angiotensin-converting enzyme inhibitors, is a major contributor to the pathophysiology. We have recently demonstrated that red blood cell derived microvesicles (RBCMVs) from aging red blood cell (RBC) units are able to trigger thrombin generation via kallikrein activation - a predominant enzyme to cleave high molecular weight kininogen (Noubouossie, Blood, 2020). Thus, we hypothesize that the same RBCMVs would lead to bradykinin generation and might explain these hypotensive events. Objectives: To determine if RBC storage lesion-derived microvesicles are able to facilitate HK cleavage and BK release. Methods: RBCMVs were prepared from 4 recently expired RBC units (42 or 43 day old, AS-3 preserved, prestorage leukoreduced, all A+) via a series of centrifugations and washes. RBCMVs were quantified and characterized using nanoparticle tracking analysis. Obtained RBCMVs were first assessed for the capacity to initiate thrombin generation in microvesicle free human plasma via a substrate cleavage assay. Next, RBCMVs were added to a buffer reaction containing prekallikrein and HK, and kininogen cleavage was assessed via western blot. RBCMVs were also mixed with microvesicle-free human plasma and analyzed for evidence of kallikrein activation, cleavage of high molecular weight kininogen, and bradykinin production by ELISA. Cohn fractionation of plasma was used to enrich for BK. Results: RBCMVs were enumerated and concentrated to 7.5 ± 1.4 x 10 12 per mL (mean±SD size 160 ± 29µm). RBCMVs were able to initiate thrombin generation principally via contact pathway activation, independently of tissue factor. In a buffer system RBCMVs demonstrated activity to generate kallikrein with a sequential high molecular weight kininogen cleavage in a dose-dependent manner. Exclusion of kallikrein from the buffer system or addition of the small molecule inhibitor of kallikrein - ecallantide - halted cleavage of kininogen. A dose-dependent cleavage of high molecular weight kininogen indicated that RBCMVs could cause BK release in plasma; this was confirmed via an independent assay of Cohn -fractionated samples. Conclusions: Results of this current study demonstrate that RBCMVs are leading to high HK cleavage via kallikrein activation in vitro. We suspect that the same mechanisms could lead to BK generation in patients receiving older RBC units, possibly increasing the risk for hypotensive events from transfusion. Disclosures Karafin: Westat, Inc.: Consultancy. Key: Sanofi: Consultancy; BioMarin: Honoraria, Other: Participation as a clinical trial investigator; Takeda: Research Funding; Grifols: Research Funding; Uniqure: Consultancy, Other: Participation as a clinical trial investigator.


Sign in / Sign up

Export Citation Format

Share Document