Stored red blood cell supernatant facilitates thrombin generation

Transfusion ◽  
2009 ◽  
Vol 49 (8) ◽  
pp. 1569-1579 ◽  
Author(s):  
Joseph Sweeney ◽  
Nicola Kouttab ◽  
Jonathan Kurtis
2018 ◽  
Vol 84 (4) ◽  
pp. 598-605 ◽  
Author(s):  
Beth A. Bouchard ◽  
Thomas Orfeo ◽  
Hollis N. Keith ◽  
Elizabeth M. Lavoie ◽  
Matthew Gissel ◽  
...  

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 923-923
Author(s):  
Patrick C. Hines ◽  
Xiufeng Gao ◽  
Andrew Herppich ◽  
Wendy Hollon ◽  
Meera B. Chitlur ◽  
...  

Abstract Introduction Pyruvate Kinase Deficiency (PKD) is an inherited glycolytic enzymopathy that is characterized by a life-long chronic hemolytic anemia with severe comorbidities. Hypercoagulability due to increased platelet activity caused by nitric oxide sequestration by cell free hemoglobin has been well-described not just in PKD, but in other hemolytic anemias as well, such as e.g., sickle cell disease (SCD). Hypercoagulability is often accompanied by a cascade of pathophysiological events leading to cell oxidative damage, endothelial activation, and changes in both cell stability and adhesive properties. Increased red blood cell (RBC) adhesion and hypercoagulability may impair microvascular blood flow. Despite these well-recognized rheological changes that are similar to those that occur in other hemolytic anemias, the relationship between baseline erythrocyte adhesion and thrombosis potential have not been well-studied in PKD. Methods 10 PKD subjects and 5 healthy controls were recruited under the IRB-approved protocol from Wayne State University. Flow adhesion of whole blood to vascular cell adhesion molecule-1 (FA-WB-VCAM) was performed by flowing whole blood (1:1 dilution) through a microfluidic channel for 3 minutes (1 dyne/cm 2 shear stress, 1.67Hz pulse frequency). Flow adhesion avidity of the whole blood sample to VCAM-1 (FAAv-WB-VCAM), representing the strength of the RBC-VCAM-1 adhesive interactions, was assessed by quantifying adhesion following sequential increase in shear (5, 10, 20 dyne/cm 2). Thrombin generation assay was conducted using platelet poor plasma with and without thrombomodulin and microparticles (MP) as previously published [1]. Clotting time - reported as lag time (LT), time to peak (ttPeak) and peak height (velocity and amount of net thrombin production), and endogenous thrombin potential (ETP), representing number of substrates potentially convertible by thrombin, were measured. Significance was at p < 0.05. Results FA-WB-VCAM at baseline sample hematocrit was significantly elevated (Figure 1) in PKD subjects (808±377 cells/mm², n=10) compared to healthy controls (6±4 cells/mm², n=4) and even to our previously reported steady state levels in sickle cell samples (290±50 cells/mm² [2]. Thrombin generation profiles were similar between PKD subjects and healthy controls with the exception of the thrombin generation index (PPP+TP/PPP)*100ETP that was significantly (p<<0.01) elevated in citrated plasma of PKD subjects (92.9±6.8) as compared to healthy controls (68.6±11.9). For PKD subjects, FA-WB-VCAM correlated significantly with platelet counts (R²=0.81, p<0.05), and FAAv-WB-VCAM was negatively correlated with platelet (P=0.03, R 2=0.5), but not with erythrocyte-derived microparticles (MP). Platelet-derived MP strongly correlated with thrombin generation (ETP, p<0.01, R 2=0.76) but not with LT or ttPeak of thrombin generation. Red blood cell MP were significantly (p=0.02) decreased in splenectomized patients (200±170, n=7) vs. non-splenectomized subjects (2090±1860, n=3). LT and ttPeak were significantly longer in PKD subjects with thrombosis history than without. Conclusions PKD subjects in this study had elevated RBC adhesive properties similar to that observed in SCD, confirming that pathologic RBC membrane damage resulting in increased adhesion is a common feature of hemolytic anemias. The hemoglobin level of 7.8±1.1 g/dL (mean±SD) for PKD patients was within 6 to 11 g/dl range of hemoglobin levels typical for SCD. There was no significant difference in any other measured parameters (thrombin generation, adhesion avidity, microparticles data). Thrombin generation in PKD subjects was not consistent with hypercoagulability. Based on these observations, pathologic RBC adhesion may be both a novel a mechanism driving hypercoagulability in individuals with PKD. Further studies to determine whether RBC-modifying therapies may decrease thrombosis risk in PKD are warranted. 1. Zia A, Callaghan MU, Callaghan JH, et al. Hypercoagulability in adolescent girls on oral contraceptives - global coagulation profile and estrogen receptor polymorphisms. Am J Hematol, 2015;90:725-31 2. Pittman DD, Hines PC, Beidler D, et al. Evaluation of Longitudinal Pain Study in Sickle Cell Disease (ELIPSIS) by patient-reported outcomes, actigraphy, and biomarkers. Blood. 2021;137(15):2010-20 Figure 1 Figure 1. Disclosures Hines: Functional Fluidics: Current holder of stock options in a privately-held company. Gao: Functional Fluidics: Current Employment. Herppich: Functional Fluidics: Ended employment in the past 24 months. Kwiatkowski: Imara: Consultancy, Research Funding; Agios Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees; Sangamo: Research Funding; Bioverativ: Research Funding; Vertex: Research Funding; Silence Therapeutics: Consultancy; bluebird bio: Consultancy, Research Funding; Bristol Myers Squibb: Membership on an entity's Board of Directors or advisory committees; Chiesi: Research Funding; CRISPR: Research Funding. Tarasev: Functional Fluidics: Current holder of stock options in a privately-held company.


2020 ◽  
Vol 196 ◽  
pp. 543-549
Author(s):  
Kamila Czubak-Prowizor ◽  
Joanna Rywaniak ◽  
Halina Malgorzata Zbikowska

1989 ◽  
Vol 67 (5) ◽  
pp. 417-422 ◽  
Author(s):  
Gerald S. Marks ◽  
Brian E. McLaughlin ◽  
Heather F. MacMillan ◽  
Kanji Nakatsu ◽  
James F. Brien

We have demonstrated previously that glyceryl trinitrate (GTN) undergoes biotransformation to two glyceryl dinitrate (GDN) metabolites in the human red blood cell – supernatant fraction (RBC–SF) by hemoglobin-mediated and sulfhydryl-dependent enzymatic mechanisms. In the present study, we have shown that biotransformation of GTN in rabbit RBC–SF yields a glyceryl-1,2-dinitrate (1,2-GDN)/glyceryl-1,3-dinitrate (1,3-GDN) ratio of 5.3. Following inhibition of hemoglobin-mediated biotransformation of GTN by carbon monoxide (CO), the 1,2-GDN/1,3-GDN ratio was 2.1. Following inhibition of sulfhydryl-dependent biotransformation by N-ethylmaleimide (NEM), the 1,2-GDN/1,3-GDN ratio was 30.0. We have demonstrated previously that for GTN-induced vasodilation of isolated bovine pulmonary vein (BPV), the 1,2-GDN/1,3-GDN ratio was 7.1, which indicated that a hemoprotein-dependent process was involved in GTN biotransformation. To determine if this was the case, the biotransformation of GTN (0.51 μM) was studied in BPV homogenates; 31.1 pmol GDN/mg BPV protein was formed in 20 min. The 1,2-GDN/1,3-GDN ratio was 1.1, which indicated that hemoprotein-mediated biotransformation did not occur. This conclusion was supported by the fact that CO did not inhibit GTN biotransformation. GTN biotransformation by BPV homogenate was inhibited 62% by NEM, 89% by boiling of the homogenate, and almost completely by boiling plus NEM. These results indicated that biotransformation of GTN by the BPV homogenate involved in a combination of enzymatic and nonenzymatic processes that were mostly sulfhydryl dependent. It is concluded that the mechanism for GTN biotransformation in isolated intact BPV, which yielded preferential formation of 1,2-GDN, was rendered nonfunctional upon tissue homogenization.Key words: glyceryl trinitrate, glyceryl dinitrate, biotransformation, erythrocyte, pulmonary vein.


Author(s):  
Laura Delvasto-Núñez ◽  
Dorina Roem ◽  
Kamran Bakhtiari ◽  
Gerard van Mierlo ◽  
Joost C. M. Meijers ◽  
...  

AbstractHemolytic disorders characterized by complement-mediated intravascular hemolysis, such as autoimmune hemolytic anemia and paroxysmal nocturnal hemoglobinuria, are often complicated by life-threatening thromboembolic complications. Severe hemolytic episodes result in the release of red blood cell (RBC)-derived proinflammatory and oxidatively reactive mediators (e.g., extracellular hemoglobin, heme, and iron) into plasma. Here, we studied the role of these hemolytic mediators in coagulation activation by measuring factor Xa (FXa) and thrombin generation in the presence of RBC lysates. Our results show that hemolytic microvesicles (HMVs) formed during hemolysis stimulate thrombin generation through a mechanism involving FVIII and FIX, the so-called intrinsic tenase complex. Iron scavenging during hemolysis using deferoxamine decreased the ability of the HMVs to enhance thrombin generation. Furthermore, the addition of ferric chloride (FeCl3) to plasma propagated thrombin generation in a FVIII- and FIX-dependent manner suggesting that iron positively affects blood coagulation. Phosphatidylserine (PS) blockade using lactadherin and iron chelation using deferoxamine reduced intrinsic tenase activity in a purified system containing HMVs as source of phospholipids confirming that both PS and iron ions contribute to the procoagulant effect of the HMVs. Finally, the effects of FeCl3 and HMVs decreased in the presence of ascorbate and glutathione indicating that oxidative stress plays a role in hypercoagulability. Overall, our results provide evidence for the contribution of iron ions derived from hemolytic RBCs to thrombin generation. These findings add to our understanding of the pathogenesis of thrombosis in hemolytic diseases.


Shock ◽  
2017 ◽  
Vol 47 (2) ◽  
pp. 217-224 ◽  
Author(s):  
Kent R. Zettel ◽  
Mitchell Dyer ◽  
Jay S. Raval ◽  
Xubo Wu ◽  
John R. Klune ◽  
...  

Transfusion ◽  
2012 ◽  
Vol 53 (8) ◽  
pp. 1744-1754 ◽  
Author(s):  
Olivier Rubin ◽  
Julien Delobel ◽  
Michel Prudent ◽  
Niels Lion ◽  
Kid Kohl ◽  
...  

2008 ◽  
Vol 207 (3) ◽  
pp. S42
Author(s):  
Joel M. Baumgartne ◽  
Ernest E. Moore ◽  
Anirban Banerjee ◽  
Christopher Silliman ◽  
Martin McCarter

Sign in / Sign up

Export Citation Format

Share Document