scholarly journals Post-settlement dispersal: the neglected link in maintenance of soft-sediment biodiversity

2015 ◽  
Vol 11 (2) ◽  
pp. 20140795 ◽  
Author(s):  
Conrad A. Pilditch ◽  
Sebastian Valanko ◽  
Joanna Norkko ◽  
Alf Norkko

Seafloor integrity is threatened by disturbances owing to human activities. The capacity of the system to recover from disturbances, as well as maintain resilience and function, depends on dispersal. In soft-sediment systems, dispersal continues after larval settlement, but there are very few measurements of how far the post-settlers disperse in nature. Spatial scales of post-settlement dispersal are, however, likely to be similar to pelagic larval dispersal because of continued, frequent, small-scale dispersal over longer periods. The consequences of this dispersal may be more important for the maintenance of biodiversity and metacommunity dynamics than is pelagic larval dispersal, because of the greater size and competency of the dispersers. We argue that an increased empirical understanding of post-settlement dispersal processes is key for predicting how benthic communities will respond to local disturbances and shrinking regional species pools, with implications for monitoring, managing and conserving biodiversity.

2013 ◽  
Vol 10 (1) ◽  
pp. 195-232 ◽  
Author(s):  
J. Ingels ◽  
A. Vanreusel

Abstract. The urge to understand spatial distributions of species and communities and their causative processes has continuously instigated the development and testing of conceptual models in spatial ecology. For the deep-sea, there is evidence that structure, diversity and function of benthic communities are regulated by a multitude of biotic and environmental processes that act in concert on different spatial scales, but the spatial patterns are poorly understood compared to those for other ecosystems. Deep-sea studies generally focus on very limited scale-ranges, thereby impairing our understanding of which spatial scales and associated processes are most important in driving diversity and ecosystem function of communities. Here, we used an extensive integrated dataset of free-living nematodes from deep-sea sediments to unravel which spatial scale is most important in determining benthic infauna communities. Multiple-factor multivariate permutational analyses were performed on different sets of community descriptors (structure, diversity, function, standing stock). The different spatial scales investigated cover two margins in the Northeast Atlantic, several submarine canyons/channel/slope areas, a bathymetrical range of 700–4300 m (represents different stations, 5–50 km apart), different sampling locations at each station (replication distances, 1–200 m), and vertical sediment profiles (cm layers). The results indicated that the most important spatial scale for diversity, functional and standing stock variability is the smallest one; infauna communities changed substantially more with differences between sediment depth layers than with differences associated to larger geographical or bathymetrical scales. Community structure differences were largest between stations at both margins. Important regulating ecosystem processes and the scale on which they occur are discussed. The results imply that, if we are to improve our understanding of ecosystem patterns of deep-sea infauna and the relevant processes driving their structure, diversity, function and standing stock, we must pay particular attention to the small-scale heterogeneity or patchiness and the causative mechanisms acting on that scale.


2013 ◽  
Vol 10 (7) ◽  
pp. 4547-4563 ◽  
Author(s):  
J. Ingels ◽  
A. Vanreusel

Abstract. The urge to understand spatial distributions of species and communities and their causative processes has continuously instigated the development and testing of conceptual models in spatial ecology. For the deep sea, there is evidence that structural and functional characteristics of benthic communities are regulated by a multitude of biotic and environmental processes that act in concert on different spatial scales, but the spatial patterns are poorly understood compared to those for terrestrial ecosystems. Deep-sea studies generally focus on very limited scale ranges, thereby impairing our understanding of which spatial scales and associated processes are most important in driving structural and functional diversity of communities. Here, we used an extensive integrated dataset of free-living nematodes from deep-sea sediments to unravel the importance of different spatial scales in determining benthic infauna communities. Multiple-factor multivariate permutational analyses were performed on different sets of community descriptors (structure, structural and functional diversity, standing stock). The different spatial scales investigated cover two margins in the northeast Atlantic, several submarine canyons/channel/slope areas, a bathymetrical range of 700–4300 m, different sampling locations at each station, and vertical sediment profiles. The results indicated that the most important spatial scale for structural and functional diversity and standing stock variability is the smallest one; infauna communities changed substantially more with differences between sediment depth layers than with differences associated to larger geographical or bathymetrical scales. Community structure differences were greatest between stations at both margins. Important regulating ecosystem processes and the scale on which they occur are discussed. The results imply that, if we are to improve our understanding of ecosystem patterns of deep-sea infauna and the relevant processes driving their structure, structural and functional diversity, and standing stock, we must pay particular attention to the small-scale heterogeneity or patchiness and the causative mechanisms acting on that scale.


Diversity ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 39 ◽  
Author(s):  
Fabiane Gallucci ◽  
Ronaldo A. Christofoletti ◽  
Gustavo Fonseca ◽  
Gustavo M. Dias

For marine benthic communities, environmental heterogeneity at small spatial scales are mostly due to biologically produced habitat heterogeneity and biotic interactions, while at larger spatial scales environmental factors may prevails over biotic features. In this study, we investigated how community structure and β-diversity of hard-bottom-associated meio- and macrofauna varied in relation to small-scale (cm–m) changes in biological substrate (an algae “turf” dominated by the macroalgae Gelidium sp., the macroalgae Caulerpa racemosa and the sponge Hymeniacidon heliophile) in a rocky shore and in relation to larger-scale (10’s m) changes in environmental conditions of the same biological substrate (the macroalgae Bostrychia sp) in different habitats (rocky shore vs. mangrove roots). Results showed that both substrate identity and the surrounding environment were important in structuring the smaller-sized meiofauna, particularly the nematode assemblages, whereas the larger and more motile macrofauna was influenced only by larger-scale changes in the surrounding ecosystem. This implies that the macrofauna explores the environment in a larger spatial scale compared to the meiofauna, suggesting that effects of spatial heterogeneity on communities are dependent on organism size and mobility. Changes in taxa composition between environments and substrates highlight the importance of habitat diversity at different scales for maintaining the diversity of the associated fauna.


2011 ◽  
Vol 2011 ◽  
pp. 1-13 ◽  
Author(s):  
Sheila M. Walsh

Nutrient pollution and fishing are the primary local causes of coral reef decline but their ecosystem-scale effects are poorly understood. Results from small-scale manipulative experiments of herbivores and nutrients suggest prioritizing management of fishing over nutrient pollution because herbivores can control macroalgae and turf in the presence of nutrients. However, ecological theory suggests that the opposite occurs at large scales. Moreover, it is unclear whether fishing decreases herbivores because fishing of predators may result in an increase in herbivores. To investigate this paradox, data on the fish and benthic communities, fishing, and nutrients were collected on Kiritimati, Kiribati. Oceanographic conditions and a population resettlement program created a natural experiment to compare sites with different levels of fishing and nutrients. Contrary to theory, herbivores controlled macroalgae in the presence of nutrients at large spatial scales, and herbivores had greater effects on macroalgae when nutrients were higher. In addition, fishing did not increase herbivores. These results suggest that protecting herbivores may have greater relative benefits than reducing nutrient pollution, especially on polluted reefs. Reallocating fishing effort from herbivores to invertivores or planktivores may be one way to protect herbivores and indirectly maintain coral dominance on reefs impacted by fishing and nutrient pollution.


“We regard the recent science –based consensual reports that climate change is, to a large extend, caused by human activities that emit green houses as tenable, Such activities range from air traffic, with a global reach over industrial belts and urban conglomerations to local small, scale energy use for heating homes and mowing lawns. This means that effective climate strategies inevitably also require action all the way from global to local levels. Since the majority of those activities originate at the local level and involve individual action, however, climate strategies must literally begin at home to hit home.”


2007 ◽  
Vol 158 (8) ◽  
pp. 235-242 ◽  
Author(s):  
Hans Rudolf Heinimann

The term «precision forestry» was first introduced and discussed at a conference in 2001. The aims of this paper are to explore the scientific roots of the precision concept, define «precision forestry», and sketch the challenges that the implementation of this new concept may present to practitioners, educators, and researchers. The term «precision» does not mean accuracy on a small scale, but instead refers to the concurrent coordination and control of processes at spatial scales between 1 m and 100 km. Precision strives for an automatic control of processes. Precision land use differs from precision engineering by the requirements of gathering,storing and managing spatio-temporal variability of site and vegetation parameters. Practitioners will be facing the challenge of designing holistic, standardized business processes that are valid for whole networks of firms,and that follow available standards (e.g., SCOR, WoodX). There is a need to educate and train forestry professionals in the areas of business process re-engineering, computer supported management of business transactions,methods of remote sensing, sensor technology and control theory. Researchers will face the challenge of integrating plant physiology, soil physics and production sciences and solving the supply chain coordination problem (SCCP).


EcoHealth ◽  
2021 ◽  
Author(s):  
Felipe A. Hernández ◽  
Amanda N. Carr ◽  
Michael P. Milleson ◽  
Hunter R. Merrill ◽  
Michael L. Avery ◽  
...  

AbstractWe investigated the landscape epidemiology of a globally distributed mammal, the wild pig (Sus scrofa), in Florida (U.S.), where it is considered an invasive species and reservoir to pathogens that impact the health of people, domestic animals, and wildlife. Specifically, we tested the hypothesis that two commonly cited factors in disease transmission, connectivity among populations and abundant resources, would increase the likelihood of exposure to both pseudorabies virus (PrV) and Brucella spp. (bacterial agent of brucellosis) in wild pigs across the Kissimmee Valley of Florida. Using DNA from 348 wild pigs and sera from 320 individuals at 24 sites, we employed population genetic techniques to infer individual dispersal, and an Akaike information criterion framework to compare candidate logistic regression models that incorporated both dispersal and land cover composition. Our findings suggested that recent dispersal conferred higher odds of exposure to PrV, but not Brucella spp., among wild pigs throughout the Kissimmee Valley region. Odds of exposure also increased in association with agriculture and open canopy pine, prairie, and scrub habitats, likely because of highly localized resources within those land cover types. Because the effect of open canopy on PrV exposure reversed when agricultural cover was available, we suggest that small-scale resource distribution may be more important than overall resource abundance. Our results underscore the importance of studying and managing disease dynamics through multiple processes and spatial scales, particularly for non-native pathogens that threaten wildlife conservation, economy, and public health.


2016 ◽  
Vol 15 (1) ◽  
pp. 96
Author(s):  
E. Iglesias-Rodríguez ◽  
M. E. Cruz ◽  
J. Bravo-Castillero ◽  
R. Guinovart-Díaz ◽  
R. Rodríguez-Ramos ◽  
...  

Heterogeneous media with multiple spatial scales are finding increased importance in engineering. An example might be a large scale, otherwise homogeneous medium filled with dispersed small-scale particles that form aggregate structures at an intermediate scale. The objective in this paper is to formulate the strong-form Fourier heat conduction equation for such media using the method of reiterated homogenization. The phases are assumed to have a perfect thermal contact at the interface. The ratio of two successive length scales of the medium is a constant small parameter ε. The method is an up-scaling procedure that writes the temperature field as an asymptotic multiple-scale expansion in powers of the small parameter ε . The technique leads to two pairs of local and homogenized equations, linked by effective coefficients. In this manner the medium behavior at the smallest scales is seen to affect the macroscale behavior, which is the main interest in engineering. To facilitate the physical understanding of the formulation, an analytical solution is obtained for the heat conduction equation in a functionally graded material (FGM). The approach presented here may serve as a basis for future efforts to numerically compute effective properties of heterogeneous media with multiple spatial scales.


2018 ◽  
Author(s):  
Gonzalo Duró ◽  
Alessandra Crosato ◽  
Maarten G. Kleinhans ◽  
Wim S. J. Uijttewaal

Abstract. Diverse methods are currently available to measure river bank erosion at broad-ranging temporal and spatial scales. Yet, no technique provides low-cost and high-resolution to survey small-scale bank processes along a river reach. We investigate the capabilities of Structure-from-Motion photogrammetry applied with imagery from an Unmanned Aerial Vehicle (UAV) to describe the evolution of riverbank profiles in middle-size rivers. The bank erosion cycle is used as a reference to assess the applicability of different techniques. We surveyed 1.2 km of a restored bank of the Meuse River eight times within a year, combining different photograph perspectives and overlaps to identify an efficient UAV flight to monitor banks. The accuracy of the Digital Surface Models (DSMs) was evaluated compared with RTK GPS points and an Airborne Laser Scanning (ALS) of the whole reach. An oblique perspective with eight photo overlaps was sufficient to achieve the highest relative precision to observation distance of ~1:1400, with 10 cm error range. A complementary nadiral view increased coverage behind bank toe vegetation. The DSM and ALS had comparable accuracies except on banks, where the latter overestimates elevations. Sequential DSMs captured signatures of the erosion cycle such as mass failures, slump-block deposition, and bank undermining. Although this technique requires low water levels and banks without dense vegetation, it is a low-cost method to survey reach-scale riverbanks in sufficient resolution to quantify bank retreat and identify morphological features of the bank failure and erosion processes.


Sign in / Sign up

Export Citation Format

Share Document