scholarly journals Deviation from niche optima affects the nature of plant–plant interactions along a soil acidity gradient

2016 ◽  
Vol 12 (1) ◽  
pp. 20150925 ◽  
Author(s):  
Lei He ◽  
Lulu Cheng ◽  
Liangliang Hu ◽  
Jianjun Tang ◽  
Xin Chen

There is increasing recognition of the importance of niche optima in the shift of plant–plant interactions along environmental stress gradients. Here, we investigate whether deviation from niche optima would affect the outcome of plant–plant interactions along a soil acidity gradient (pH = 3.1, 4.1, 5.5 and 6.1) in a pot experiment. We used the acid-tolerant species Lespedeza formosa Koehne as the neighbouring plant and the acid-tolerant species Indigofera pseudotinctoria Mats. or acid-sensitive species Medicago sativa L. as the target plants. Biomass was used to determine the optimal pH and to calculate the relative interaction index (RII). We found that the relationships between RII and the deviation of soil pH from the target's optimal pH were linear for both target species. Both targets were increasingly promoted by the neighbour as pH values deviated from their optima; neighbours benefitted target plants by promoting soil symbiotic arbuscular mycorrhizal fungi, increasing soil organic matter or reducing soil exchangeable aluminium. Our results suggest that the shape of the curve describing the relationship between soil pH and facilitation/competition depends on the soil pH optima of the particular species.

2021 ◽  
Vol 12 ◽  
Author(s):  
Stephan Unger ◽  
Franziska M. Habermann ◽  
Katarina Schenke ◽  
Marjan Jongen

Arbuscular mycorrhizal fungi (AMF) may affect competitive plant interactions, which are considered a prevalent force in shaping plant communities. Aiming at understanding the role of AMF in the competition between two pasture species and its dependence on soil nutritional status, a pot experiment with mycorrhizal and non-mycorrhizal Lolium multiflorum and Trifolium subterraneum was conducted, with manipulation of species composition (five levels), and nitrogen (N)- and phosphorus (P)- fertilization (three levels). In the non-mycorrhizal state, interspecific competition did not play a major role. However, in the presence of AMF, Lolium was the strongest competitor, with this species being facilitated by Trifolium. While N-fertilization did not change the competitive balance, P-fertilization gave Lolium, a competitive advantage over Trifolium. The effect of AMF on the competitive outcome may be driven by differential C-P trade benefits, with Lolium modulating carbon investment in the mycorrhizal network and the arbuscule/vesicle ratio at the cost of Trifolium.


Author(s):  
Anita Bueno de Camargo Nunes ◽  
Orivaldo José Saggin Júnior ◽  
Eliane Maria Ribeiro da Silva ◽  
Flávio Araújo Pinto ◽  
Jessé Valentim dos Santos ◽  
...  

Abstract: The objective of this work was to evaluate the effect of the use of steel slag as a soil acidity corrective and of mycorrhizal fungi associated with phosphate fertilization on corn plants. The study was performed in a greenhouse, using 3-kg pots with a Typic Haplorthox, in a 4x5x2 factorial arrangement, with four acidity correction treatments (C1, correction with dolomitic limestone at a dose of 4 Mg ha-1; C2, correction with steel slag at a dose of 4 Mg ha-1; C3, correction with a 1:1 mixture of 2 Mg ha-1 dolomitic limestone and 2 Mg ha-1 steel slag; and C4, control, without pH correction), five phosphorus doses (0, 42, 95, 213, and 480 mg dm-3), and the presence or absence of two arbuscular mycorrhizal fungi (Rhizophagus clarus and Gigaspora margarita), with five replicates. Steel slag was efficient in correcting soil pH and providing Ca and Mg for the plants; therefore, it could replace limestone. The inoculation with R. clarus and G. margarita, associated with P doses of 42, 95, and 213 mg dm-3, improved the development of corn plants after 45 days, resulting in greater plant height, stem diameter, leaf area, and shoot and root dry matter.


2000 ◽  
Vol 29 (1) ◽  
pp. 55-62 ◽  
Author(s):  
J.C. Dodd

Symbionts called ‘mycorrhizal fungi’ occur in most biomes on earth, and are a fundamental reason for plant growth and development on the planet. The most common group of mycorrhizal fungi is that of the arbuscular mycorrhizal fungi (AMF), which colonize the roots of over 80% of land plant families, but they cannot as yet be cultured away from the host plant. AMF are primarily responsible for nutrient transfer from soil to plant, but have other roles such as soil aggregation, protection of plants against drought stress and soil pathogens, and increasing plant diversity. This is achieved by the growth of their fungal mycelium within a host root and out into the soil beyond. There is an urgent need to study the below-ground microbiology of soils in agro-and natural ecosystems, as AMF are pivotal in closing nutrient cycles and have a proven multifunctional role in soil–plant interactions. More information is also needed on the biodiversity and functional diversity of these microbes and their interactions with crops and plants.


2017 ◽  
Vol 14 (20) ◽  
pp. 4815-4827 ◽  
Author(s):  
Chuang Zhang ◽  
Xin-Yu Zhang ◽  
Hong-Tao Zou ◽  
Liang Kou ◽  
Yang Yang ◽  
...  

Abstract. The nitrate to ammonium ratios in nitrogen (N) compounds in wet atmospheric deposits have increased over the recent past, which is a cause for some concern as the individual effects of nitrate and ammonium deposition on the biomass of different soil microbial communities and enzyme activities are still poorly defined. We established a field experiment and applied ammonium (NH4Cl) and nitrate (NaNO3) at monthly intervals over a period of 4 years. We collected soil samples from the ammonium and nitrate treatments and control plots in three different seasons, namely spring, summer, and fall, to evaluate the how the biomass of different soil microbial communities and enzyme activities responded to the ammonium (NH4Cl) and nitrate (NaNO3) applications. Our results showed that the total contents of phospholipid fatty acids (PLFAs) decreased by 24 and 11 % in the ammonium and nitrate treatments, respectively. The inhibitory effects of ammonium on Gram-positive bacteria (G+) and bacteria, fungi, actinomycetes, and arbuscular mycorrhizal fungi (AMF) PLFA contents ranged from 14 to 40 % across the three seasons. We also observed that the absolute activities of C, N, and P hydrolyses and oxidases were inhibited by ammonium and nitrate, but that nitrate had stronger inhibitory effects on the activities of acid phosphatase (AP) than ammonium. The activities of N-acquisition specific enzymes (enzyme activities normalized by total PLFA contents) were about 21 and 43 % lower in the ammonium and nitrate treatments than in the control, respectively. However, the activities of P-acquisition specific enzymes were about 19 % higher in the ammonium treatment than in the control. Using redundancy analysis (RDA), we found that the measured C, N, and P hydrolysis and polyphenol oxidase (PPO) activities were positively correlated with the soil pH and ammonium contents, but were negatively correlated with the nitrate contents. The PLFA biomarker contents were positively correlated with soil pH, soil organic carbon (SOC), and total N contents, but were negatively correlated with the ammonium contents. The soil enzyme activities varied seasonally, and were highest in March and lowest in October. In contrast, the contents of the microbial PLFA biomarkers were higher in October than in March and June. Ammonium may inhibit the contents of PLFA biomarkers more strongly than nitrate because of acidification. This study has provided useful information about the effects of ammonium and nitrate on soil microbial communities and enzyme activities.


Sign in / Sign up

Export Citation Format

Share Document