scholarly journals Submerged freshwater plant communities do not show species complementarity effect in wetland mesocosms

2018 ◽  
Vol 14 (12) ◽  
pp. 20180635 ◽  
Author(s):  
T. Riis ◽  
A. Olesen ◽  
S. M. Jensen ◽  
A. B. Alnoee ◽  
A. Baattrup-Pedersen ◽  
...  

It is a generally accepted theory that ecological functions are enhanced with increased diversity in plant communities due to species complementarity effects. We tested this theory in a mesocosm study using freshwater submerged plant beds to determine if increasing species number caused overyielding and species complementarity. We applied a maximum of four species in the plant beds corresponding to the typical species number in natural freshwater plant beds. We found no clear effects of species number (1–4) on biomass production and thus no conclusive overyielding and complementarity effect. This may be explained by low species differentiation among the four species in plant traits relevant for resource acquisition in freshwater, or that other species interactions, e.g. allelopathy, were inhibiting overyielding. The existing knowledge on species complementarity in aquatic plant communities is sparse and inconclusive and calls for more research.

Science ◽  
2006 ◽  
Vol 314 (5800) ◽  
pp. 812-814 ◽  
Author(s):  
B. Shipley ◽  
D. Vile ◽  
E. Garnier

2020 ◽  
Vol 1 ◽  
pp. 53-75
Author(s):  
Dimitrios Zervas ◽  
Ioannis Tsiripidis ◽  
Erwin Bergmeier ◽  
Vasiliki Tsiaoussi

Aims: This study aims to contribute to the knowledge of European freshwater lake ecosystems with updated and new information on aquatic plant communities, by conducting national-scale phytosociological research of freshwater lake vegetation in Greece. Moreover, it investigates the relationship between aquatic plant communities and lake environmental parameters, including eutrophication levels and hydro-morphological conditions. Study area: Lakes in Greece, SE Europe. Methods: 5,690 phytosociological relevés of aquatic vegetation were sampled in 18 freshwater lake ecosystems during 2013–2016. The relevés were subjected to hierarchical cluster and indicator species analyses in order to identify associations and communities of aquatic vegetation, as well as to describe their syntaxonomy. Multiple regression analysis was applied to investigate the relationship between vegetation syntaxa and environmental parameters of lakes, i.e. physico-chemical parameters and water level fluctuation. Results: Ninety-nine plant taxa belonging to 30 different families were recorded. Forty-six vegetation types were identified and described by their ecological characteristics, diagnostic taxa and syntaxonomical status. Thirteen vegetation types, the largest number belonging to the vegetation class Charetea, are considered to be new records for Greece. The distribution of the vegetation types recorded in the 18 freshwater lakes was found to depend on environmental parameters and levels of eutrophication. Conclusions: An updated aquatic vegetation inventory was produced for Greek lakes, and primary results showed that the presence/absence of aquatic plant communities and the community composition in freshwater lakes can be utilized to assess the pressure of eutrophication on lake ecosystems. Taxonomic reference: Euro+Med (2006–). Abbreviations: MNT = Mean number of taxa; WFD = Water Framework Directive.


2018 ◽  
Vol 9 ◽  
Author(s):  
Antonella Petruzzella ◽  
Johan Manschot ◽  
Casper H. A. van Leeuwen ◽  
Bart M. C. Grutters ◽  
Elisabeth S. Bakker

2012 ◽  
Vol 69 (10) ◽  
pp. 1642-1650 ◽  
Author(s):  
Paul C. Frost ◽  
Andrea L. Hicks

Human activities associated with residential development potentially alter ecological processes in lake littoral zones. We determined how the nutrient stoichiometry of aquatic plant communities relates to residential density around lakes of south-central Ontario. We calculated the elemental composition of entire plant communities from multiple sites in 12 lakes using measurements of individual plant C:N:P ratios and their areal biomass. We found considerable variability in the C:N:P ratios of whole aquatic plant communities among sites and lakes, which was not accounted for by intraspecific variability in the elemental composition of aquatic plants. Instead, differences in community-level C:N:P ratios primarily resulted from high interspecific variability in the elemental composition among dominant plant taxa and variable taxonomic composition of sampled plant communities. Plant community composition differed among lakes with and without shoreline residences, and we found lower C:N and C:P ratios in communities from littoral zones in human-developed lakes. Our results thus demonstrate a link between the elemental and taxonomic composition of aquatic plant communities, which may mediate biogeochemical responses of littoral zones to development of lake shorelines.


Sign in / Sign up

Export Citation Format

Share Document