Vegetation Classification and Survey
Latest Publications


TOTAL DOCUMENTS

46
(FIVE YEARS 46)

H-INDEX

1
(FIVE YEARS 1)

Published By Pensoft Publishers

2683-0671

2021 ◽  
Vol 2 ◽  
pp. 293-304
Author(s):  
Iwona Dembicz ◽  
Jürgen Dengler ◽  
François Gillet ◽  
Thomas J. Matthews ◽  
Manuel J. Steinbauer ◽  
...  

Aims: To quantify how fine-grain (within-plot) beta diversity differs among biomes and vegetation types. Study area: Palaearctic biogeographic realm. Methods: We extracted 4,654 nested-plot series with at least four different grain sizes between 0.0001 m² and 1,024 m² from the GrassPlot database spanning broad geographic and ecological gradients. Next, we calculated the slope parameter (z-value) of the power-law species–area relationship (SAR) to use as a measure of multiplicative beta diversity. We did this separately for vascular plants, bryophytes and lichens and for the three groups combined (complete vegetation). We then tested whether z-values differed between biomes, ecological-physiognomic vegetation types at coarse and fine levels and phytosociological classes. Results: We found that z-values varied significantly among biomes and vegetation types. The explanatory power of area for species richness was highest for vascular plants, followed by complete vegetation, bryophytes and lichens. Within each species group, the explained variance increased with typological resolution. In vascular plants, adjusted R2 was 0.14 for biomes, but reached 0.50 for phytosociological classes. Among the biomes, mean z-values were particularly high in the Subtropics with winter rain (Mediterranean biome) and the Dry tropics and subtropics. Natural grasslands had higher z-values than secondary grasslands. Alpine and Mediterranean vegetation types had particularly high z-values whereas managed grasslands with benign soil and climate conditions and saline communities were characterised by particularly low z-values. Conclusions: In this study relating fine-grain beta diversity to typological units, we found distinct patterns. As we explain in a conceptual figure, these can be related to ultimate drivers, such as productivity, stress and disturbance, which can influence z-values via multiple pathways. The provided means, medians and quantiles of z-values for a wide range of typological entities provide benchmarks for local to continental studies, while calling for additional data from under-represented units. Syntaxonomic references: Mucina et al. (2016) for classes occurring in Europe; Ermakov (2012) for classes restricted to Asia. Abbreviations: ANOVA = analysis of variance; EDGG = Eurasian Dry Grassland Group; SAR = species-area relationship.


2021 ◽  
Vol 2 ◽  
pp. 305-309
Author(s):  
Wolfgang Willner ◽  
Andraž Čarni ◽  
Federico Fernández-González ◽  
Jens Pallas ◽  
Jean Paul Theurillat

In this Report, three previously published nomenclatural proposals are discussed, and recommendations on acceptance or rejection of these proposals are provided. The proposals concern the following syntaxa: Berberidion Braun-Blanquet 1950, Aceretalia pseudoplataniMoor 1976 and Festucetalia valesiacae Braun-Blanquet et Tüxen ex Braun-Blanquet 1950. Abbreviations: CCCN = Committee for the Change and Conservation of Names; GPN = Working Group for Phytosociological Nomenclature; ICPN = International Code of Phytosociological Nomenclature.


2021 ◽  
Vol 2 ◽  
pp. 293-304
Author(s):  
Iwona Dembicz ◽  
Jürgen Dengler ◽  
François Gillet ◽  
Thomas J. Matthews ◽  
Manuel J. Steinbauer ◽  
...  

Aims: To quantify how fine-grain (within-plot) beta diversity differs among biomes and vegetation types. Study area: Palaearctic biogeographic realm. Methods: We extracted 4,654 nested-plot series with at least four different grain sizes between 0.0001 m² and 1,024 m² from the GrassPlot database spanning broad geographic and ecological gradients. Next, we calculated the slope parameter (z-value) of the power-law species–area relationship (SAR) to use as a measure of multiplicative beta diversity. We did this separately for vascular plants, bryophytes and lichens and for the three groups combined (complete vegetation). We then tested whether z-values differed between biomes, ecological-physiognomic vegetation types at coarse and fine levels and phytosociological classes. Results: We found that z-values varied significantly among biomes and vegetation types. The explanatory power of area for species richness was highest for vascular plants, followed by complete vegetation, bryophytes and lichens. Within each species group, the explained variance increased with typological resolution. In vascular plants, adjusted R2 was 0.14 for biomes, but reached 0.50 for phytosociological classes. Among the biomes, mean z-values were particularly high in the Subtropics with winter rain (Mediterranean biome) and the Dry tropics and subtropics. Natural grasslands had higher z-values than secondary grasslands. Alpine and Mediterranean vegetation types had particularly high z-values whereas managed grasslands with benign soil and climate conditions and saline communities were characterised by particularly low z-values. Conclusions: In this study relating fine-grain beta diversity to typological units, we found distinct patterns. As we explain in a conceptual figure, these can be related to ultimate drivers, such as productivity, stress and disturbance, which can influence z-values via multiple pathways. The provided means, medians and quantiles of z-values for a wide range of typological entities provide benchmarks for local to continental studies, while calling for additional data from under-represented units. Syntaxonomic references: Mucina et al. (2016) for classes occurring in Europe; Ermakov (2012) for classes restricted to Asia. Abbreviations: ANOVA = analysis of variance; EDGG = Eurasian Dry Grassland Group; SAR = species-area relationship.


2021 ◽  
Vol 2 ◽  
pp. 257-274
Author(s):  
Hallie Seiler ◽  
Daniel Küry ◽  
Regula Billeter ◽  
Jürgen Dengler

Aims: The spring habitats of Central Europe are insular biotopes of high ecological value. Although subject to severe exploitation pressures, they do not yet have a comprehensive protection status in Switzerland. Contributing to this challenge is the controversy involved with their syntaxonomic classification. In the context of the development of a regional conservation strategy and the establishment of a national inventory of Swiss springs, we carried out a regional survey of spring vegetation and aimed to translate this into a classification system. Study area: Montane and subalpine zones of Parc Ela (Grisons, Switzerland). Methods: We selected 20 springs to cover different regions, elevations and bedrock types within the park. In each of them we recorded complete vascular plant and bryophyte composition as well as a range of environmental variables in three 1-m² plots that were placed to reflect the heterogeneity within the spring. After running an unsupervised classification with modified TWINSPAN, the distinguished vegetation units were characterized in terms of diagnostic species, species richness and environmental variables and placed within the syntaxonomic system. Results: Species richness was high (total species 264, mean 21.7 species in 1 m2). The two most important environmental gradients of the ordination were elevation/water conductivity and insolation/water pH/soil reaction EIV. We distinguished seven communities within two main groups. Conclusions: All unshaded springs, including those over siliceous bedrock, could be assigned to a broadly defined Cratoneurion. The petrifying springs were not strongly distinguishable floristically from other base-rich springs. The forest springs, although often not clearly differentiated from their unshaded counterparts, could be provisionally divided into the alliances Caricion remotae and Lycopodo europaei-Cratoneurion commutati. As there is a certain threat to these habitats in the park due to anthropogenic influence, protection measures are recommended, most importantly the appropriate management of alpine pastures. Taxonomic reference: Juillerat et al. (2017) for vascular plants, Meier et al. (2013) for bryophytes. Abbreviations: ANOVA = analysis of variance; DCA = detrended correspondence analysis; EIV = ecological indicator value; FOEN = Federal Office of the Environment (Switzerland); NCHO = Ordinance on the Protection of Nature and Cultural Heritage; SD = standard deviation; TWINSPAN = Two Way Indicator Species Analysis; WPA = Federal Act on the Protection of Waters.


2021 ◽  
Vol 2 ◽  
pp. 275-291
Author(s):  
Wolfgang Willner ◽  
Don Faber-Langendoen

Aims: To link the Braun-Blanquet units of the EuroVegChecklist (EVC) with the upper levels of the International Vegetation Classification (IVC), and to propose a division level classification for Europe. Study area: Europe. Methods: We established a tabular linkage between EVC classes and IVC formations and identified mismatches between these two levels. We then proposed IVC division level units to organize EVC classes. Results: We organized the EVC classes into 21 formations and 30 divisions. We flagged classes that did not fit comfortably within an existing formation, either because its content corresponded to more than one formation or because it did not fit any formation description. In a few cases, we split EVC classes because they seemed too heterogenous to be assigned to a single formation. Conclusions: The IVC approach adds a set of physiognomic and ecological criteria that effectively organizes the EVC classes, which are already being increasingly informed by physiognomy. Therefore, the formation concepts are relatively natural extensions of concepts already embedded in the classes. However, physiognomic placement of Braun-Blanquet classes can be difficult when the sampling of the vegetation is at finer grain than usual in the respective formation (tall-scrub, annual pioneer communities). Some EVC classes seem too heterogenous to fit into the IVC formation system. Delimitation of these classes has often been a matter of debate for many decades, and the IVC perspective might help to solve these intricate issues. In other cases, mismatches between phytosociological classes and IVC formations might better be solved by emending the current formation concepts. Abbreviations: BB = Braun-Blanquet; EVC = EuroVegChecklist; IVC = International Vegetation Classification.


2021 ◽  
Vol 2 ◽  
pp. 241-255
Author(s):  
John T. Hunter ◽  
Eda Addicott

Aims: Ecosystems nationally at risk in Australia are listed under the Environmental Protection and Biodiversity Act (EPBC Act), and many cross State jurisdictional boundaries. The determination of these ecosystems across the State boundaries are based on expert knowledge. The International Vegetation Classification has the potential to be useful as a cross-jurisdictional hierarchy which also gives global perspective to ecosystems. Study Area: All bioregions that include Eucalyptus populnea as a dominant or major component of woodlands across the species known distribution. Methods: We use plot-based data (455 plots) from two states (Queensland and New South Wales) in eastern Australia and quantitative classification methods to assess the definition and description for the Poplar Box Woodland ecosystem type (hereafter “ecological community” or “community”) that is listed as endangered under the EPBC Act. Analyses were conducted using kR-CLUSTER methods to generate alliances. Within these alliances, analyses were undertaken to define associations using agglomerative hierarchical clustering and similarity profile testing (SIMPROF). We then explore how assigning this community into the IVC hierarchy may provide a mechanism for linking Australian communities, defined at the association and alliance levels, to international communities at risk. Results: We define three alliances and 23 associations based on the results of floristic analysis. Using the standard rule-set of the IVC system, we found that the IVC hierarchy was a useful instrument in correlating ecological communities across jurisdictional boundaries where different classification systems are used. It is potentially important in giving a broader understanding of communities that may be at risk continentally and globally. Conclusions: We conclude that the IVC hierarchy can incorporate Australian communities at the association level into useful units at higher levels, and provides a useful classification tool for Australian ecosystems. Taxonomic reference: PlantNET (http://plantnet/10rbgsyd.nsw.gov.au/) [accessed June 2019]. Abbreviations: EPBC Act = Environmental Protection and Biodiversity Act; IVC = International Vegetation Classification; NMDS = non-metric multidimensional scaling; NSW = New South Wales; PCT = Plant Community Type; QLD = Queensland; RE = Regional Vegetation Community; SIMPER = similarity percentage analysis; SIMPROF = Similarity profile analysis.


2021 ◽  
Vol 2 ◽  
pp. 195-231
Author(s):  
Itziar García-Mijangos ◽  
Asun Berastegi ◽  
Idoia Biurrun ◽  
Iwona Dembicz ◽  
Monika Janišová ◽  
...  

Aims: To clarify the syntaxonomic position of the grasslands in Navarre, with special focus on the dry grasslands, and to characterise the resulting syntaxonomic units in terms of diagnostic species and ecological conditions. Study area: Navarre (northern Spain). Methods: We sampled 119 plots of 10 m2 following the standardised EDGG methodology and analysed them together with 839 plots of similar size recorded in the 1990. For the classification, we used the modified TWINSPAN algorithm, complemented by the determination of diagnostic species with phi coefficients of association, which led to the creation of an expert system. We conducted these steps in a hierarchical manner for each syntaxonomic rank. We visualised the position of the syntaxa along environmental gradients by means of NMDS. Species richness, and structural and ecological characteristics of the syntaxa were compared by ANOVAs. Results: We could clearly identify five phytosociological classes: Lygeo-Stipetea, Festuco-Brometea, Molinio-Arrhenatheretea, Nardetea strictae, and Elyno-Seslerietea. Within the Festuco-Brometea a xeric and a meso-xeric order could be distinguished, with two alliances each, and eight associations in total: Thymelaeo-Aphyllanthetum, Jurineo-Festucetum, Helianthemo-Koelerietum, Prunello-Plantaginetum, Carduncello-Brachypodietum, Helictotricho-Seslerietum, Calamintho-Seselietum and Carici-Teucrietum.Conclusions: The combination of numerical methods allowed a consistent and more objective classification of grassland types in Navarre than previous approaches. At the association level, we could largely reproduce the units previously described with traditional phytosociological methods. By contrast, at higher syntaxonomic level, our analyses suggest significant modifications. Most importantly, a major part of the units traditionally included in the Festuco-Ononidetea seem to fall within the Festuco-Brometea. We could show that bryophytes and lichens are core elements of these grasslands and particularly the Mediterranean ones of Lygeo-Stipetea, both in terms of biodiversity and of diagnostic species. We conclude that the combination of our different numerical methods is promising for deriving more objective and reproducible delimitations of syntaxa in a hierarchical manner. Taxonomic references: Euro+Med (2006–2021) for vascular plants, Hodges et al. (2020) for bryophytes and The British Lichen Society (2021) for lichens, except for Endocarpon loscosii, Heppia lutosa, Psora saviczii and P. vallesiaca, which follow Nimis and Martellos (2021), and Buellia zoharyi, Fulgensia poeltii, Lichenochora clauzadei and Toninia massata, which follow Llimona et al. (2001). Syntaxonomic reference: Mucina et al. (2016), except for those syntaxa specifically treated here and given with authorities. Abbreviations: ANOVA = analysis of variance; EDGG = Eurasian Dry Grassland Group; NMDS: non-metric multidimensional scaling; TWINSPAN = Two-Way Indicator Species Analysis.


2021 ◽  
Vol 2 ◽  
pp. 237-239
Author(s):  
Michal Slezák ◽  
Ján Kliment ◽  
Milan Valachovič

We propose (i) to select Quercus robur as the name-giving taxon of the associations Molinio arundinaceae-QuercetumSamek 1962 and Molinio arundinaceae-QuercetumNeuhäusl et Neuhäuslová-Novotná 1967 and (ii) to conserve the younger name Molinio arundinaceae-Quercetum roborisNeuhäusl et Neuhäuslová-Novotná 1967, representing hygrophytic Central European acidophilous oak forests (Quercion roboris alliance). (28) Molinio arundinaceae-QuercetumNeuhäusl et Neuhäuslová-Novotná 1967: 17–23, table 2. Typus: Neuhäusl and Neuhäuslová-Novotná (1967), table 2, rel. 11 (lectotypus; Pallas 1996: 51). (H) Molinio arundinaceae-QuercetumSamek 1962: 134–135, table V on p. 156–160. Typus: Samek (1962), Table V, rel. 28 (lectotypus; Moravec 1998: 33). Taxonomic reference: Marhold et al. (1998). Abbreviations: ICPN = International Code of Phytosociological Nomenclature.


2021 ◽  
Vol 2 ◽  
pp. 233-235
Author(s):  
Massimo Terzi ◽  
Romeo Di Pietro ◽  
Jean-Paul Theurillat

The two alliances Xerobromion and Mesobromion derive from the change of rank of two suballiances of the BromionKoch 1926 (Xerobromenion and Mesobromenion). Zoller (1954a) recognized that those suballiances could not belong to the same alliance (i.e. Bromion) and treated them as two separate alliances, although some doubts can be raised that he did not clearly adopted them at the rank of alliance. Zoller’s work having been overlooked, other authors proposed subsequently to rise the Xerobromenion and Mesobromenion to the rank of alliances. Accordingly, the alliances Xerobromion and Mesobromion are often cited with author citations other than Zoller 1954. The present paper requests a binding decision on the valid publication of the names Xerobromion and Mesobromion in Zoller (1954a). Abbreviations: EVC = EuroVegChecklist; ICPN = International Code of Phytosociological Nomenclature.


2021 ◽  
Vol 2 ◽  
pp. 159-175
Author(s):  
Gonzalo Navarro ◽  
José Antonio Molina

The knowledge of biomes as large-scale ecosystem units has benefited from advances in the ecological and evolutionary sciences. Despite this, a universal biome classification system that also allows a standardized nomenclature has not yet been achieved. We propose a comprehensive and hierarchical classification method and nomenclature to define biomes based on a set of bioclimatic variables and their corresponding vegetation structure and ecological functionality. This method uses three hierarchical biome levels: Zonal biome (Macrobiome), Biome and Regional biome. Biome nomenclature incorporates both bioclimatic and vegetation characterization (i.e. formation). Bioclimate characterization basically includes precipitation rate and thermicity. The description of plant formations encompasses vegetation structure, physiognomy and foliage phenology. Since the available systems tend to underestimate the complexity and diversity of tropical ecosystems, we have tested our approach in the biogeographical area of the Neotropics. Our proposal includes a bioclimatic characterization of the main 16 Neotropical plant formations identified. This method provides a framework that (1) enables biome distribution and changes to be projected from bioclimatic data; (2) allows all biomes to be named according to a globally standardized scheme; and (3) integrates various ecological biome approaches with the contributions of the European and North American vegetation classification systems. Taxonomic reference: Jørgensen et al. (2014). Dedication: This work is dedicated to the memory of and in homage to Prof. Dr. Salvador Rivas-Martínez.


Sign in / Sign up

Export Citation Format

Share Document