scholarly journals Balancing selection and drift in a polymorphic salamander metapopulation

2021 ◽  
Vol 17 (4) ◽  
Author(s):  
Sean T. Giery ◽  
Marketa Zimova ◽  
Dana L. Drake ◽  
Mark C. Urban

Understanding how genetic variation is maintained in a metapopulation is a longstanding problem in evolutionary biology. Historical resurveys of polymorphisms have offered efficient insights about evolutionary mechanisms, but are often conducted on single, large populations, neglecting the more comprehensive view afforded by considering all populations in a metapopulation. Here, we resurveyed a metapopulation of spotted salamanders ( Ambystoma maculatum ) to understand the evolutionary drivers of frequency variation in an egg mass colour polymorphism. We found that this metapopulation was demographically, phenotypically and environmentally stable over the last three decades. However, further analysis revealed evidence for two modes of evolution in this metapopulation—genetic drift and balancing selection. Although we cannot identify the balancing mechanism from these data, our findings present a clear view of contemporary evolution in colour morph frequency and demonstrate the importance of metapopulation-scale studies for capturing a broad range of evolutionary dynamics.

Botany ◽  
2012 ◽  
Vol 90 (11) ◽  
pp. 1180-1185 ◽  
Author(s):  
Spencer C.H. Barrett ◽  
Mary T.K. Arroyo

Negative frequency-dependent selection resulting from disassortative mating should result in equal morph ratios in tristylous populations at equilibrium. However, surveys of morph-frequency variation in tristylous species commonly report deviations from equality. Here, we report variation in morph ratios in Oxalis squamata Zucc., an endemic of the Andean region of Chile and Argentina. Absence of clonal propagation in this species allows unambiguous estimates of the morph ratio of genets. We sampled floral morph ratios in 20 populations occurring in Central Chile and investigated the relation between morph evenness in populations and their size. All populations of O. squamata were tristylous but with significant heterogeneity among populations in morph ratios. Although small populations exhibited a greater variance in morph evenness, biased ratios were also evident in several large populations. We found no evidence of morph loss or a consistent bias in morph frequencies as reported in some tristylous species. Biased morph frequencies in large populations probably arise from episodic sexual recruitment following disturbance and a slow approach to equilibrium.


2012 ◽  
Vol 8 (5) ◽  
pp. 890-893 ◽  
Author(s):  
Eric M. O'Neill ◽  
Karen H. Beard ◽  
Michael E. Pfrender

A long-standing question in evolutionary biology is what becomes of adaptive traits when a species expands its range into novel environments. Here, we report the results of a study on an adaptive colour pattern polymorphism (stripes) of the coqui frog, Eleutherodactylus coqui , following its introduction to Hawaii from Puerto Rico. We compared population differentiation ( ) for the stripes locus—which underlies this colour pattern polymorphism—with neutral microsatellite loci to test for a signature of selection among native and introduced populations. Among native populations, for stripes were lower than expected under the neutral model, suggesting uniform balancing selection. Alternatively, among introduced populations, for stripes did not differ from the neutral model. These results suggest that the evolutionary dynamics of this previously adaptive trait have become dominated by random genetic drift following the range expansion.


2022 ◽  
Vol 8 ◽  
Author(s):  
Eric Aaron ◽  
Joshua Hawthorne-Madell ◽  
Ken Livingston ◽  
John H. Long

To fully understand the evolution of complex morphologies, analyses cannot stop at selection: It is essential to investigate the roles and interactions of multiple processes that drive evolutionary outcomes. The challenges of undertaking such analyses have affected both evolutionary biologists and evolutionary roboticists, with their common interests in complex morphologies. In this paper, we present analytical techniques from evolutionary biology, selection gradient analysis and morphospace walks, and we demonstrate their applicability to robot morphologies in analyses of three evolutionary mechanisms: randomness (genetic mutation), development (an explicitly implemented genotype-to-phenotype map), and selection. In particular, we applied these analytical techniques to evolved populations of simulated biorobots—embodied robots designed specifically as models of biological systems, for the testing of biological hypotheses—and we present a variety of results, including analyses that do all of the following: illuminate different evolutionary dynamics for different classes of morphological traits; illustrate how the traits targeted by selection can vary based on the likelihood of random genetic mutation; demonstrate that selection on two selected sets of morphological traits only partially explains the variance in fitness in our biorobots; and suggest that biases in developmental processes could partially explain evolutionary dynamics of morphology. When combined, the complementary analytical approaches discussed in this paper can enable insight into evolutionary processes beyond selection and thereby deepen our understanding of the evolution of robotic morphologies.


2018 ◽  
Author(s):  
Russell A. Ligon ◽  
Christopher D. Diaz ◽  
Janelle L. Morano ◽  
Jolyon Troscianko ◽  
Martin Stevens ◽  
...  

Ornaments used in courtship often vary wildly among species, reflecting the evolutionary interplay between mate preference functions and the constraints imposed by natural selection. Consequently, understanding the evolutionary dynamics responsible for ornament diversification has been a longstanding challenge in evolutionary biology. However, comparing radically different ornaments across species, as well as different classes of ornaments within species, is a profound challenge to understanding diversification of sexual signals. Using novel methods and a unique natural history dataset, we explore evolutionary patterns of ornament evolution in a group - the birds-of-paradise - exhibiting dramatic phenotypic diversification widely assumed to be driven by sexual selection. Rather than the tradeoff between ornament types originally envisioned by Darwin and Wallace, we found positive correlations among cross-modal (visual/acoustic) signals indicating functional integration of ornamental traits into a composite unit - the courtship phenotype. Furthermore, given the broad theoretical and empirical support for the idea that systemic robustness - functional overlap and interdependency - promotes evolutionary innovation, we posit that birds-of-paradise have radiated extensively through ornamental phenotype space as a consequence of the robustness in the courtship phenotype that we document at a phylogenetic scale. We suggest that the degree of robustness in courtship phenotypes among taxa can provide new insights into the relative influence of sexual and natural selection on phenotypic radiations.Author SummaryAnimals frequently vary widely in ornamentation, even among closely related species. Understanding the patterns that underlie this variation is a significant challenge, requiring comparisons among drastically different traits - like comparing apples to oranges. Here, we use novel analytical approaches to quantify variation in ornamental diversity and richness across the wildly divergent birds-of-paradise, a textbook example of how sexual selection can profoundly shape organismal phenotypes. We find that color and acoustic complexity, along with behavior and acoustic complexity, are positively correlated across evolutionary time-scales. Positive covariation among ornament classes suggests that selection is acting on correlated suites of traits - a composite courtship phenotype - and that this integration may be partially responsible for the extreme variation we see in birds-of-paradise.


2020 ◽  
Author(s):  
Kamaludin Dingle ◽  
Fatme Ghaddar ◽  
Petr Šulc ◽  
Ard A. Louis

The relative prominence of developmental bias versus natural selection is a long standing controversy in evolutionary biology. Here we demonstrate quantitatively that developmental bias is the primary explanation for the occupation of the morphospace of RNA secondary structure (SS) shapes. By using the RNAshapes method to define coarse-grained SS classes, we can directly measure the frequencies that non-coding RNA SS shapes appear in nature. Our main findings are, firstly, that only the most frequent structures appear in nature: The vast majority of possible structures in the morphospace have not yet been explored. Secondly, and perhaps more surprisingly, these frequencies are accurately predicted by the likelihood that structures appear upon uniform random sampling of sequences. The ultimate cause of these patterns is not natural selection, but rather strong phenotype bias in the RNA genotype-phenotype (GP) map, a type of developmental bias that tightly constrains evolutionary dynamics to only act within a reduced subset of structures which are easy to “find”.


2019 ◽  
Vol 36 (8) ◽  
pp. 1686-1700 ◽  
Author(s):  
Covadonga Vara ◽  
Laia Capilla ◽  
Luca Ferretti ◽  
Alice Ledda ◽  
Rosa A Sánchez-Guillén ◽  
...  

Abstract One of the major challenges in evolutionary biology is the identification of the genetic basis of postzygotic reproductive isolation. Given its pivotal role in this process, here we explore the drivers that may account for the evolutionary dynamics of the PRDM9 gene between continental and island systems of chromosomal variation in house mice. Using a data set of nearly 400 wild-caught mice of Robertsonian systems, we identify the extent of PRDM9 diversity in natural house mouse populations, determine the phylogeography of PRDM9 at a local and global scale based on a new measure of pairwise genetic divergence, and analyze selective constraints. We find 57 newly described PRDM9 variants, this diversity being especially high on Madeira Island, a result that is contrary to the expectations of reduced variation for island populations. Our analysis suggest that the PRDM9 allelic variability observed in Madeira mice might be influenced by the presence of distinct chromosomal fusions resulting from a complex pattern of introgression or multiple colonization events onto the island. Importantly, we detect a significant reduction in the proportion of PRDM9 heterozygotes in Robertsonian mice, which showed a high degree of similarity in the amino acids responsible for protein–DNA binding. Our results suggest that despite the rapid evolution of PRDM9 and the variability detected in natural populations, functional constraints could facilitate the accumulation of allelic combinations that maintain recombination hotspot symmetry. We anticipate that our study will provide the basis for examining the role of different PRDM9 genetic backgrounds in reproductive isolation in natural populations.


2020 ◽  
Vol 37 (5) ◽  
pp. 1295-1305 ◽  
Author(s):  
Sean P Mullen ◽  
Nicholas W VanKuren ◽  
Wei Zhang ◽  
Sumitha Nallu ◽  
Evan B Kristiansen ◽  
...  

Abstract Understanding the origin and maintenance of adaptive phenotypic novelty is a central goal of evolutionary biology. However, both hybridization and incomplete lineage sorting can lead to genealogical discordance between the regions of the genome underlying adaptive traits and the remainder of the genome, decoupling inferences about character evolution from population history. Here, to disentangle these effects, we investigated the evolutionary origins and maintenance of Batesian mimicry between North American admiral butterflies (Limenitis arthemis) and their chemically defended model (Battus philenor) using a combination of de novo genome sequencing, whole-genome resequencing, and statistical introgression mapping. Our results suggest that balancing selection, arising from geographic variation in the presence or absence of the unpalatable model, has maintained two deeply divergent color patterning haplotypes that have been repeatedly sieved among distinct mimetic and nonmimetic lineages of Limenitis via introgressive hybridization.


2020 ◽  
Vol 37 (4) ◽  
pp. 566-599 ◽  
Author(s):  
Marc G. Chevrette ◽  
Karina Gutiérrez-García ◽  
Nelly Selem-Mojica ◽  
César Aguilar-Martínez ◽  
Alan Yañez-Olvera ◽  
...  

We review known evolutionary mechanisms underlying the overwhelming chemical diversity of bacterial natural products biosynthesis, focusing on enzyme promiscuity and the evolution of enzymatic domains that enable metabolic traits.


Sign in / Sign up

Export Citation Format

Share Document