scholarly journals The evolution of intelligence in mammalian carnivores

2017 ◽  
Vol 7 (3) ◽  
pp. 20160108 ◽  
Author(s):  
Kay E. Holekamp ◽  
Sarah Benson-Amram

Although intelligence should theoretically evolve to help animals solve specific types of problems posed by the environment, it is unclear which environmental challenges favour enhanced cognition, or how general intelligence evolves along with domain-specific cognitive abilities. The social intelligence hypothesis posits that big brains and great intelligence have evolved to cope with the labile behaviour of group mates. We have exploited the remarkable convergence in social complexity between cercopithecine primates and spotted hyaenas to test predictions of the social intelligence hypothesis in regard to both cognition and brain size. Behavioural data indicate that there has been considerable convergence between primates and hyaenas with respect to their social cognitive abilities. Moreover, compared with other hyaena species, spotted hyaenas have larger brains and expanded frontal cortex, as predicted by the social intelligence hypothesis. However, broader comparative study suggests that domain-general intelligence in carnivores probably did not evolve in response to selection pressures imposed specifically in the social domain. The cognitive buffer hypothesis, which suggests that general intelligence evolves to help animals cope with novel or changing environments, appears to offer a more robust explanation for general intelligence in carnivores than any hypothesis invoking selection pressures imposed strictly by sociality or foraging demands.

2012 ◽  
Vol 279 (1740) ◽  
pp. 3027-3034 ◽  
Author(s):  
Luke McNally ◽  
Sam P. Brown ◽  
Andrew L. Jackson

The high levels of intelligence seen in humans, other primates, certain cetaceans and birds remain a major puzzle for evolutionary biologists, anthropologists and psychologists. It has long been held that social interactions provide the selection pressures necessary for the evolution of advanced cognitive abilities (the ‘social intelligence hypothesis’), and in recent years decision-making in the context of cooperative social interactions has been conjectured to be of particular importance. Here we use an artificial neural network model to show that selection for efficient decision-making in cooperative dilemmas can give rise to selection pressures for greater cognitive abilities, and that intelligent strategies can themselves select for greater intelligence, leading to a Machiavellian arms race. Our results provide mechanistic support for the social intelligence hypothesis, highlight the potential importance of cooperative behaviour in the evolution of intelligence and may help us to explain the distribution of cooperation with intelligence across taxa.


2018 ◽  
Vol 373 (1756) ◽  
pp. 20170288 ◽  
Author(s):  
Benjamin J. Ashton ◽  
Alex Thornton ◽  
Amanda R. Ridley

The prevailing hypotheses for the evolution of cognition focus on either the demands associated with group living (the social intelligence hypothesis (SIH)) or ecological challenges such as finding food. Comparative studies testing these hypotheses have generated highly conflicting results; consequently, our understanding of the drivers of cognitive evolution remains limited. To understand how selection shapes cognition, research must incorporate an intraspecific approach, focusing on the causes and consequences of individual variation in cognition. Here, we review the findings of recent intraspecific cognitive research to investigate the predictions of the SIH. Extensive evidence from our own research on Australian magpies ( Cracticus tibicen dorsalis ), and a number of other taxa, suggests that individuals in larger social groups exhibit elevated cognitive performance and, in some cases, elevated reproductive fitness. Not only do these findings demonstrate how the social environment has the potential to shape cognitive evolution, but crucially, they demonstrate the importance of considering both genetic and developmental factors when attempting to explain the causes of cognitive variation. This article is part of the theme issue ‘Causes and consequences of individual differences in cognitive abilities’.


2021 ◽  
pp. 109-122
Author(s):  
Susan D. Healy

The first discussion of a relationship between sociality and intelligence came in the middle of the twentieth century, especially by Humphrey who suggested that living socially demanded intellectual abilities above and beyond those required by an animal’s ecology. This led to the Social Intelligence Hypothesis, and then the Machiavellian Intelligence Hypothesis, both proposing that sociality was the main driver of the superior intellect of primates, especially humans. Two key challenges for this hypothesis are that sociality is difficult to quantify and cognition is not well tested by problem solving. More importantly, as data from more species have been examined, the analyses increasingly fail to show that sociality explains variation in brain size, even in primates. I conclude that appealing as this hypothesis is, it does not do a very compelling job of explaining variation in brain size.


2021 ◽  
Author(s):  
Rebecca Hooper ◽  
Becky Brett ◽  
Alex Thornton

There are multiple hypotheses for the evolution of cognition. The most prominent hypotheses are the Social Intelligence Hypothesis (SIH) and the Ecological Intelligence Hypothesis (EIH), which are often pitted against one another. These hypotheses tend to be tested using broad-scale comparative studies of brain size, where brain size is used as a proxy of cognitive ability, and various social and/or ecological variables are included as predictors. Here, we test how methodologically robust such analyses are. First, we investigate variation in brain and body size measurements across >1000 species of bird. We demonstrate that there is substantial variation in brain and body size estimates across datasets, indicating that conclusions drawn from comparative brain size models are likely to differ depending on the source of the data. Following this, we subset our data to the Corvides infraorder and interrogate how modelling decisions impact results. We show that model results change substantially depending on variable inclusion, source and classification. Indeed, we could have drawn multiple contradictory conclusions about the principal drivers of brain size evolution. These results reflect recent concerns that current methods in comparative brain size studies are not robust. We add our voices to a growing community of researchers suggesting that we move on from using such methods to investigate cognitive evolution. We suggest that a more fruitful way forward is to instead use direct measures of cognitive performance to interrogate why variation in cognition arises within species and between closely related taxa.


2018 ◽  
Vol 285 (1882) ◽  
pp. 20181017 ◽  
Author(s):  
Michael A. Pardo ◽  
Emilee A. Sparks ◽  
Tejal S. Kuray ◽  
Natasha D. Hagemeyer ◽  
Eric L. Walters ◽  
...  

According to the social intelligence hypothesis, understanding the cognitive demands of the social environment is key to understanding the evolution of intelligence. Many important socio-cognitive abilities, however, have primarily been studied in a narrow subset of the social environment—within-group social interactions—despite the fact that between-group social interactions often have a substantial effect on fitness. In particular, triadic awareness (knowledge about the relationships and associations between others) is critical for navigating many types of complex social interactions, yet no existing study has investigated whether wild animals can track associations between members of other social groups. We investigated inter-group triadic awareness in wild acorn woodpeckers ( Melanerpes formicivorus ), a socially complex group-living bird. We presented woodpeckers with socially incongruous playbacks that simulated two outsiders from different groups calling together, and socially congruous playbacks that simulated two outsiders from the same group calling together. Subjects responded more quickly to the incongruous playbacks, suggesting that they were aware that the callers belonged to two different groups. This study provides the first demonstration that animals can recognize associations between members of other groups under natural circumstances, and highlights the importance of considering how inter-group social selection pressures may influence the evolution of cognition.


2007 ◽  
Vol 362 (1480) ◽  
pp. 639-648 ◽  
Author(s):  
Henrike Moll ◽  
Michael Tomasello

Nicholas Humphrey's social intelligence hypothesis proposed that the major engine of primate cognitive evolution was social competition. Lev Vygotsky also emphasized the social dimension of intelligence, but he focused on human primates and cultural things such as collaboration, communication and teaching. A reasonable proposal is that primate cognition in general was driven mainly by social competition, but beyond that the unique aspects of human cognition were driven by, or even constituted by, social cooperation. In the present paper, we provide evidence for this Vygotskian intelligence hypothesis by comparing the social-cognitive skills of great apes with those of young human children in several domains of activity involving cooperation and communication with others. We argue, finally, that regular participation in cooperative, cultural interactions during ontogeny leads children to construct uniquely powerful forms of perspectival cognitive representation.


2007 ◽  
Vol 362 (1480) ◽  
pp. 489-505 ◽  
Author(s):  
Nathan J Emery ◽  
Amanda M Seed ◽  
Auguste M.P von Bayern ◽  
Nicola S Clayton

The ‘social intelligence hypothesis’ was originally conceived to explain how primates may have evolved their superior intellect and large brains when compared with other animals. Although some birds such as corvids may be intellectually comparable to apes, the same relationship between sociality and brain size seen in primates has not been found for birds, possibly suggesting a role for other non-social factors. But bird sociality is different from primate sociality. Most monkeys and apes form stable groups, whereas most birds are monogamous, and only form large flocks outside of the breeding season. Some birds form lifelong pair bonds and these species tend to have the largest brains relative to body size. Some of these species are known for their intellectual abilities (e.g. corvids and parrots), while others are not (e.g. geese and albatrosses). Although socio-ecological factors may explain some of the differences in brain size and intelligence between corvids/parrots and geese/albatrosses, we predict that the type and quality of the bonded relationship is also critical. Indeed, we present empirical evidence that rook and jackdaw partnerships resemble primate and dolphin alliances. Although social interactions within a pair may seem simple on the surface, we argue that cognition may play an important role in the maintenance of long-term relationships, something we name as ‘relationship intelligence’.


2020 ◽  
Vol 18 (4) ◽  
pp. 147470492095444
Author(s):  
Liana S. E. Hone ◽  
John E. Scofield ◽  
Bruce D. Bartholow ◽  
David C. Geary

Evolutionary theory suggests that commonly found sex differences are largest in healthy populations and smaller in populations that have been exposed to stressors. We tested this idea in the context of men’s typical advantage (vs. women) in visuospatial abilities (e.g., mental rotation) and women’s typical advantage (vs. men) in social-cognitive (e.g., facial-expression decoding) abilities, as related to frequent binge drinking. Four hundred nineteen undergraduates classified as frequent or infrequent binge drinkers were assessed in these domains. Trial-level multilevel models were used to test a priori Sex × Group (binge drinking) interactions for visuospatial and social-cognitive tasks. Among infrequent binge drinkers, men’s typical advantage in visuospatial abilities and women’s typical advantage in social-cognitive abilities was confirmed. Among frequent binge drinkers, men’s advantage was reduced for one visuospatial task (Δ d = 0.29) and eliminated for another (Δ d = 0.75), and women’s advantage on the social-cognitive task was eliminated (Δ d = 0.12). Males who frequently engaged in extreme binges had exaggerated deficits on one of the visuospatial tasks, as did their female counterparts on the social-cognitive task. The results suggest sex-specific vulnerabilities associated with recent, frequent binge drinking, and support an evolutionary approach to the study of these vulnerabilities.


2007 ◽  
Vol 362 (1480) ◽  
pp. 719-730 ◽  
Author(s):  
Kim Sterelny

This paper is about the evolution of hominin intelligence. I agree with defenders of the social intelligence hypothesis in thinking that externalist models of hominin intelligence are not plausible: such models cannot explain the unique cognition and cooperation explosion in our lineage, for changes in the external environment (e.g. increasing environmental unpredictability) affect many lineages. Both the social intelligence hypothesis and the social intelligence–ecological complexity hybrid I outline here are niche construction models. Hominin evolution is hominin response to selective environments that earlier hominins have made. In contrast to social intelligence models, I argue that hominins have both created and responded to a unique foraging mode; a mode that is both social in itself and which has further effects on hominin social environments. In contrast to some social intelligence models, on this view, hominin encounters with their ecological environments continue to have profound selective effects. However, though the ecological environment selects, it does not select on its own. Accidents and their consequences, differential success and failure, result from the combination of the ecological environment an agent faces and the social features that enhance some opportunities and suppress others and that exacerbate some dangers and lessen others. Individuals do not face the ecological filters on their environment alone, but with others, and with the technology, information and misinformation that their social world provides.


2020 ◽  
Vol 74 (12) ◽  
Author(s):  
Johanna Henke-von der Malsburg ◽  
Peter M. Kappeler ◽  
Claudia Fichtel

AbstractVariation in cognitive abilities is thought to be linked to variation in brain size, which varies across species with either social factors (Social Intelligence Hypothesis) or ecological challenges (Ecological Intelligence Hypothesis). However, the nature of the ecological processes invoked by the Ecological Intelligence Hypothesis, like adaptations to certain habitat characteristics or dietary requirements, remains relatively poorly known. Here, we review comparative studies that experimentally investigated interspecific variation in cognitive performance in relation to a species’ degree of ecological specialisation. Overall, the relevant literature was biased towards studies of mammals and birds as well as studies focusing on ecological challenges related to diet. We separated ecological challenges into those related to searching for food, accessing a food item and memorising food locations. We found interspecific variation in cognitive performance that can be explained by adaptations to different foraging styles. Species-specific adaptations to certain ecological conditions, like food patch distribution, characteristics of food items or seasonality also broadly predicted variation in cognitive abilities. A species’ innovative problem-solving and spatial processing ability, for example, could be explained by its use of specific foraging techniques or search strategies, respectively. Further, habitat generalists were more likely to outperform habitat specialists. Hence, we found evidence that ecological adaptations and cognitive performance are linked and that the classification concept of ecological specialisation can explain variation in cognitive performance only with regard to habitat, but not dietary specialisation.


Sign in / Sign up

Export Citation Format

Share Document