scholarly journals A general method for multiscale modelling of vector-borne disease systems

2019 ◽  
Vol 10 (1) ◽  
pp. 20190047 ◽  
Author(s):  
Winston Garira ◽  
Faraimunashe Chirove

The inability to develop multiscale models which can describe vector-borne disease systems in terms of the complete pathogen life cycle which represents multiple targets for control has hindered progress in our efforts to control, eliminate and even eradicate these multi-host infections. This is because it is currently not easy to determine precisely where and how in the life cycles of vector-borne disease systems the key constrains which are regarded as crucial in regulating pathogen population dynamics in both the vertebrate host and vector host operate. In this article, we present a general method for development of multiscale models of vector-borne disease systems which integrate the within-host and between-host scales for the two hosts (a vertebrate host and a vector host) that are implicated in vector-borne disease dynamics. The general multiscale modelling method is an extension of our previous work on multiscale models of infectious disease systems which established a basic science and accompanying theory of how pathogen population dynamics at within-host scale scales up to between-host scale and in turn how it scales down from between-host scale to within-host scale. Further, the general method is applied to multiscale modelling of human onchocerciasis—a vector-borne disease system which is sometimes called river blindness as a case study.

Author(s):  
Michael B. Bonsall

Understanding methods of vector control is essential to vector-borne disease (VBD) management. Vaccines or standard medical interventions for many VDBs do not exist or are poorly developed so disease control is focused on managing vector numbers and dynamics. This involves understanding not only the population dynamics but also the population genetics of vectors. Using mosquitoes as a case study, in this chapter, the modern genetics-based methods of vector control (self-limiting, self-sustaining) on mosquito population and disease suppression will be reviewed. These genetics-based methods highlight the importance of understanding the interplay between genetics and ecology to develop optimal, cost-effective solutions for control. The chapter focuses on how these genetics-based methods can be integrated with other interventions, and concludes with a summary of regulatory and policy perspectives about the use of these approaches in the management of VBDs.


2010 ◽  
Author(s):  
Tomás Francisco Yago Vincente ◽  
Brian Mullen ◽  
Thomas N. Mather ◽  
Jean-Yves Herve

2018 ◽  
Vol 4 (4) ◽  
pp. 513
Author(s):  
Rakhshan .

Mosquitoes are vectors of many pathogens which causes serious human diseases like Malaria, Filariasis, Japanese encephalitis, Dengue fever, Chikungunya, Yellow fever and Zika virus which constitute a major public health problem globally. Mosquito borne diseases cause high level of economic impact all over the world and result in millions of death every year. They infect around 700,000,000 people annually worldwide and 40,000,000 only in India. The continuous use of synthetic pesticides to control vector mosquitoes has caused physiological resistance, toxic effect on human health, environmental pollution and addition to these, its adverse effects can be observed on non-target organisms. Synthetic chemical pesticides have been proved to be effective, but overall in last 5 decades indiscriminate use of synthetic pesticides against vector borne disease control have originated several ecological issues due to their residual accumulation and development of resistance in target vectors and their chronic effects.


2008 ◽  
Vol 63 (4) ◽  
pp. 1-7
Author(s):  
Krzysztof Kostro ◽  
Dorota Luft-Deptuła ◽  
Zdzisław Gliński

Pathogens ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 2
Author(s):  
Erik Neff ◽  
Christopher C. Evans ◽  
Pablo D. Jimenez Castro ◽  
Ray M. Kaplan ◽  
Guha Dharmarajan

Parasite drug resistance presents a major obstacle to controlling and eliminating vector-borne diseases affecting humans and animals. While vector-borne disease dynamics are affected by factors related to parasite, vertebrate host and vector, research on drug resistance in filarial parasites has primarily focused on the parasite and vertebrate host, rather than the mosquito. However, we expect that the physiological costs associated with drug resistance would reduce the fitness of drug-resistant vs. drug-susceptible parasites in the mosquito wherein parasites are not exposed to drugs. Here we test this hypothesis using four isolates of the dog heartworm (Dirofilaria immitis)—two drug susceptible and two drug resistant—and two vectors—the yellow fever mosquito (Aedes aegypti) and the Asian tiger mosquito (Ae. albopictus)—as our model system. Our data indicated that while vector species had a significant effect on vectorial capacity, there was no significant difference in the vectorial capacity of mosquitoes infected with drug-resistant vs. drug-susceptible parasites. Consequently, contrary to expectations, our data indicate that drug resistance in D. immitis does not appear to reduce the transmission efficiency of these parasites, and thus the spread of drug-resistant parasites in the vertebrate population is unlikely to be mitigated by reduced fitness in the mosquito vector.


2021 ◽  
Vol 9 ◽  
pp. 205031212110367
Author(s):  
Berhanu Tarekegn ◽  
Ayanaw Tamene

Background: Visceral leishmaniasis is a vector-borne disease caused by Leishmania donovani transmitted by sand fly species. It is the third most common vector-borne disease globally. Visceral leishmaniasis is endemic in Ethiopia with an estimated annual incidence ranging from 3700 to 7400 cases. This research aimed to assess the clinical presentations and laboratory profiles of visceral leishmaniasis for early diagnosis and timely initiation of management. Objective: To describe the clinical and laboratory manifestation and diagnostic modalities of visceral leishmaniasis among adult patients admitted to Felege Hiwot Hospital, from 1 September 2016 to 30 August 2019. Method: Institution-based retrospective cross-sectional study was conducted among 141 patients admitted to Felege Hiwot Hospital from 1 September 2016 to 30 August 2019. Descriptive statistics were used to describe the clinical presentation and laboratory profiles of patients with visceral leishmaniasis. Results: Among a total of 141 enrolled patients in the study, males were affected 13-fold. Most of them were travelers to endemic areas during the winter season for labor work. The mean duration of illness was 48 days. Common symptoms were fever (96.5%), weightless (82.5%), jaundice (18.4%), vomiting/diarrhea (13.5%), and bleeding episodes (11.3%). Splenomegaly was seen in 98.6%, ascites in 35.5%, and lymphadenopathy in 9.9%. Lymphadenopathy was seen significantly in HIV patients (40%). Anemia was seen in 95%, thrombocytopenia in 90.2%, leukopenia in 86.4%, and pancytopenia in 79.4%. Half of the patients had coinfection. Neutropenic sepsis was seen in 21.3%. The diagnosis was made by tissue aspiration in 65% of patients. Conclusion: The majority of patients who were diagnosed to have visceral leishmaniasis were young male adults who traveled to the endemic areas seasonally. Fever and splenomegaly were seen as the commonest clinical presentation. Lymphadenopathy occurred in high frequency among HIV co-infected patients. Anemia was the commonest hematologic finding.


Sign in / Sign up

Export Citation Format

Share Document