scholarly journals Experimental insights into flow impingement in cerebral aneurysm by stereoscopic particle image velocimetry: transition from a laminar regime

2013 ◽  
Vol 10 (82) ◽  
pp. 20121031 ◽  
Author(s):  
Takanobu Yagi ◽  
Ayaka Sato ◽  
Manabu Shinke ◽  
Sara Takahashi ◽  
Yasutaka Tobe ◽  
...  

This study experimentally investigated the instability of flow impingement in a cerebral aneurysm, which was speculated to promote the degradation of aneurysmal wall. A patient-specific, full-scale and elastic-wall replica of cerebral artery was fabricated from transparent silicone rubber. The geometry of the aneurysm corresponded to that found at 9 days before rupture. The flow in a replica was analysed by quantitative flow visualization (stereoscopic particle image velocimetry) in a three-dimensional, high-resolution and time-resolved manner. The mid-systolic and late-diastolic flows with a Reynolds number of 450 and 230 were compared. The temporal and spatial variations of near-wall velocity at flow impingement delineated its inherent instability at a low Reynolds number. Wall shear stress (WSS) at that site exhibited a combination of temporal fluctuation and spatial divergence. The frequency range of fluctuation was found to exceed significantly that of the heart rate. The high-frequency-fluctuating WSS appeared only during mid-systole and disappeared during late diastole. These results suggested that the flow impingement induced a transition from a laminar regime. This study demonstrated that the hydrodynamic instability of shear layer could not be neglected even at a low Reynolds number. No assumption was found to justify treating the aneurysmal haemodynamics as a fully viscous laminar flow.

2009 ◽  
Vol 131 (6) ◽  
Author(s):  
G. F. K. Tay ◽  
D. C. S. Kuhn ◽  
M. F. Tachie

This paper reports an experimental investigation of the effects of wall roughness and favorable pressure gradient on low Reynolds number turbulent flow in a two-dimensional asymmetric converging channel. Flow convergence was produced by means of ramps (of angles 2 deg and 3 deg) installed on the bottom wall of a plane channel. The experiments were conducted over a smooth surface and over transitionally rough and fully rough surfaces produced from sand grains and gravel of nominal mean diameters 1.55 mm and 4.22 mm, respectively. The dimensionless acceleration parameter was varied from 0.38×10−6 to 3.93×10−6 while the Reynolds number based on the boundary layer momentum thickness was varied from 290 to 2250. The velocity measurements were made using a particle image velocimetry technique. From these measurements, the distributions of the mean velocity and Reynolds stresses were obtained to document the salient features of transitionally and fully rough low Reynolds number turbulent boundary layers subjected to favorable pressure gradient.


Author(s):  
B. R. McAuliffe ◽  
M. I. Yaras

This paper presents experimental results on separation-bubble transition at low Reynolds number and low freestream turbulence, measured on an airfoil using particle image velocimetry (PIV). The two-dimensional PIV measurements have been performed over the suction surface of a low-Reynolds-number airfoil in a water tow-tank facility. Reynolds numbers, based on airfoil chord length and towing speed, of 40,000 and 65,000 have been examined at various angles of incidence, providing a range of streamwise pressure distributions and transitional separation-bubble geometries. The types of bubbles observed range from a short and thick bubble with separation near the leading edge of the airfoil, to a long and thin bubble with separation far downstream of the suction peak. The PIV measurements facilitate visualization of the vortex dynamics associated with separation-bubble transition. The growth of instability waves within the separated shear layer and eventual breakdown into turbulence is documented through the instantaneous vector fields. For all cases examined, large-scale vortex shedding and multiple reverse-flow zones are observed in the reattachment region. A technique for estimating the location of transition onset based on statistical turbulence quantities is presented, and comparisons are made to existing transition models.


Author(s):  
Jean-Pierre Rabbah ◽  
Neelakantan Saikrishnan ◽  
Ajit P. Yoganathan

Patient specific mitral valve computational models are being actively developed to facilitate surgical planning. These numerical models increasingly employ more realistic geometries, kinematics, and mechanical properties, which in turn requires rigorous experimental validation [1]. However, to date, native mitral flow dynamics have not been accurately and comprehensively characterized. In this study, we used Stereoscopic Particle Image Velocimetry (SPIV) to characterize the ventricular flow field proximal to a native mitral valve in a pulsatile experimental flow loop.


2006 ◽  
Author(s):  
Kenichi Watanabe ◽  
Tomonori Nakatsuka ◽  
Daichi Suzuki ◽  
Takashi Nagumo ◽  
Masahiro Motosuke ◽  
...  

Recent development of micro devices is remarkable as in the examples of Micro-TAS, Lab-on-a-chip or ultra micro gas turbine. In order to make the micro devices smaller and more effective, an appropriate use of a micro scale jet as an actuator can be a key technology. Aiming at the development of a measurement system of the micro flow control devices in the future micro aerodynamics, we have established a system to measure a continuous jet, a pulsed jet and a synthetic jet for the flow control in the low Reynolds number air flow with a micro length scale. The two-dimensional flow field around the micro jet using micro particle image velocimetry (PIV) was measured. The jet was injected through the device using an acoustic speaker. It was observed that a saddle point existed at the certain phase where the velocity is 0 at the boundary of the jet blowing and suction phase for the synthetic jet into a still air. It was found that the pulsed jet and the synthetic jet are more effective in the fluid mixing in the low Reynolds number flow than the continuous jet. The dead water region was observed downstream of the jet in case of the jet injection into cross flow. It was recognized that the synthetic jet at the certain oscillation frequency generated a vortex pair near the jet hole.


Author(s):  
Reza Kamyab Matin ◽  
Hojat Ghassemi ◽  
Abbas Ebrahimi ◽  
Bahman Ghasemi

In this article, the flow field around NACA0024 airfoil with step at lower and upper surfaces is experimentally investigated. For this purpose, particle image velocimetry technique based on the instantaneous flow structures is used to investigate the flow field around the airfoil at different times. All the experimental measurements in current study are conducted at very low Reynolds number condition based on the chord of the airfoil (Re=2000) and at angles of attack at 0° and 5° where the flow around airfoils is separated. The differences between vortical structures, mean streamlines, sizes of the wake regions, and vortex shedding of the stepped airfoils compared to unmodified airfoil are observed. The results disclose that using step in airfoil leads to a decrease in the Strouhal number. In addition, the formation of vortices in wake region and their positions at different times are discussed.


Sign in / Sign up

Export Citation Format

Share Document