scholarly journals A Jones matrix formalism for simulating three-dimensional polarized light imaging of brain tissue

2015 ◽  
Vol 12 (111) ◽  
pp. 20150734 ◽  
Author(s):  
M. Menzel ◽  
K. Michielsen ◽  
H. De Raedt ◽  
J. Reckfort ◽  
K. Amunts ◽  
...  

The neuroimaging technique three-dimensional polarized light imaging (3D-PLI) provides a high-resolution reconstruction of nerve fibres in human post-mortem brains. The orientations of the fibres are derived from birefringence measurements of histological brain sections assuming that the nerve fibres—consisting of an axon and a surrounding myelin sheath—are uniaxial birefringent and that the measured optic axis is oriented in the direction of the nerve fibres (macroscopic model). Although experimental studies support this assumption, the molecular structure of the myelin sheath suggests that the birefringence of a nerve fibre can be described more precisely by multiple optic axes oriented radially around the fibre axis (microscopic model). In this paper, we compare the use of the macroscopic and the microscopic model for simulating 3D-PLI by means of the Jones matrix formalism. The simulations show that the macroscopic model ensures a reliable estimation of the fibre orientations as long as the polarimeter does not resolve structures smaller than the diameter of single fibres. In the case of fibre bundles, polarimeters with even higher resolutions can be used without losing reliability. When taking the myelin density into account, the derived fibre orientations are considerably improved.

Author(s):  
Markus Axer ◽  
David Grässel ◽  
Melanie Kleiner ◽  
Jürgen Dammers ◽  
Timo Dickscheid ◽  
...  

1994 ◽  
Vol 72 (3-4) ◽  
pp. 134-140
Author(s):  
D. J. De Smet

Expressions for the elements of the Jones matrix describing the reflection of polarized light from a material with an applied static magnetic field directed parallel to the intersection of the plane of incidence and the plane of the surface are derived using the 4 × 4 matrix formalism.


Author(s):  
Kai Benning ◽  
Miriam Menzel ◽  
Jan André Reuter ◽  
Markus Axer

AbstractIn recent years, Independent Component Analysis (ICA) has successfully been applied to remove noise and artifacts in images obtained from Three-dimensional Polarized Light Imaging (3D-PLI) at the mesoscale (i.e., 64 $$\upmu $$ μ m). Here, we present an automatic denoising procedure for gray matter regions that allows to apply the ICA also to microscopic images, with reasonable computational effort. Apart from an automatic segmentation of gray matter regions, we applied the denoising procedure to several 3D-PLI images from a rat and a vervet monkey brain section.


Science ◽  
2020 ◽  
Vol 368 (6498) ◽  
pp. 1465-1468 ◽  
Author(s):  
Steven Daly ◽  
Frédéric Rosu ◽  
Valérie Gabelica

DNA and proteins are chiral: Their three-dimensional structures cannot be superimposed with their mirror images. Circular dichroism spectroscopy is widely used to characterize chiral compounds, but data interpretation is difficult in the case of mixtures. We recorded the electronic circular dichroism spectra of DNA helices separated in a mass spectrometer. We studied guanine-rich strands having various secondary structures, electrosprayed them as negative ions, irradiated them with an ultraviolet nanosecond optical parametric oscillator laser, and measured the difference in electron photodetachment efficiency between left and right circularly polarized light. The reconstructed circular dichroism ion spectra resembled those of their solution-phase counterparts, thereby allowing us to assign the DNA helical topology. The ability to measure circular dichroism directly on biomolecular ions expands the capabilities of mass spectrometry for structural analysis.


Nanophotonics ◽  
2020 ◽  
Vol 9 (16) ◽  
pp. 4719-4728
Author(s):  
Tao Deng ◽  
Shasha Li ◽  
Yuning Li ◽  
Yang Zhang ◽  
Jingye Sun ◽  
...  

AbstractThe molybdenum disulfide (MoS2)-based photodetectors are facing two challenges: the insensitivity to polarized light and the low photoresponsivity. Herein, three-dimensional (3D) field-effect transistors (FETs) based on monolayer MoS2 were fabricated by applying a self–rolled-up technique. The unique microtubular structure makes 3D MoS2 FETs become polarization sensitive. Moreover, the microtubular structure not only offers a natural resonant microcavity to enhance the optical field inside but also increases the light-MoS2 interaction area, resulting in a higher photoresponsivity. Photoresponsivities as high as 23.8 and 2.9 A/W at 395 and 660 nm, respectively, and a comparable polarization ratio of 1.64 were obtained. The fabrication technique of the 3D MoS2 FET could be transferred to other two-dimensional materials, which is very promising for high-performance polarization-sensitive optical and optoelectronic applications.


Odontology ◽  
2021 ◽  
Author(s):  
Yoko Yamaguchi ◽  
Akira Saito ◽  
Masafumi Horie ◽  
Akira Aoki ◽  
Patrick Micke ◽  
...  

AbstractPeriodontitis is a chronic inflammatory disease leading to progressive connective tissue degradation and loss of the tooth-supporting bone. Clinical and experimental studies suggest that hepatocyte growth factor (HGF) is involved in the dysregulated fibroblast–epithelial cell interactions in periodontitis. The aim of this study was to explore effects of HGF to impact fibroblast-induced collagen degradation. A patient-derived experimental cell culture model of periodontitis was applied. Primary human epithelial cells and fibroblasts isolated from periodontitis-affected gingiva were co-cultured in a three-dimensional collagen gel. The effects of HGF neutralizing antibody on collagen gel degradation were tested and transcriptome analyses were performed. HGF neutralizing antibody attenuated collagen degradation and elicited expression changes of genes related to extracellular matrix (ECM) and cell adhesion, indicating that HGF signaling inhibition leads to extensive impact on cell–cell and cell–ECM interactions. Our study highlights a potential role of HGF in periodontitis. Antagonizing HGF signaling by a neutralizing antibody may represent a novel approach for periodontitis treatment.


IEEE Access ◽  
2018 ◽  
Vol 6 ◽  
pp. 6585-6593 ◽  
Author(s):  
Xiaojie Tian ◽  
Qingyang Wang ◽  
Guijie Liu ◽  
Wei Deng ◽  
Zhiming Gao

Sign in / Sign up

Export Citation Format

Share Document