scholarly journals Form and function in gene regulatory networks: the structure of network motifs determines fundamental properties of their dynamical state space

2016 ◽  
Vol 13 (120) ◽  
pp. 20160179 ◽  
Author(s):  
S. E. Ahnert ◽  
T. M. A. Fink

Network motifs have been studied extensively over the past decade, and certain motifs, such as the feed-forward loop, play an important role in regulatory networks. Recent studies have used Boolean network motifs to explore the link between form and function in gene regulatory networks and have found that the structure of a motif does not strongly determine its function, if this is defined in terms of the gene expression patterns the motif can produce. Here, we offer a different, higher-level definition of the ‘function’ of a motif, in terms of two fundamental properties of its dynamical state space as a Boolean network. One is the basin entropy, which is a complexity measure of the dynamics of Boolean networks. The other is the diversity of cyclic attractor lengths that a given motif can produce. Using these two measures, we examine all 104 topologically distinct three-node motifs and show that the structural properties of a motif, such as the presence of feedback loops and feed-forward loops, predict fundamental characteristics of its dynamical state space, which in turn determine aspects of its functional versatility. We also show that these higher-level properties have a direct bearing on real regulatory networks, as both basin entropy and cycle length diversity show a close correspondence with the prevalence, in neural and genetic regulatory networks, of the 13 connected motifs without self-interactions that have been studied extensively in the literature.

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Miguel Casanova ◽  
Madeleine Moscatelli ◽  
Louis Édouard Chauvière ◽  
Christophe Huret ◽  
Julia Samson ◽  
...  

AbstractTransposable elements (TEs) have been proposed to play an important role in driving the expansion of gene regulatory networks during mammalian evolution, notably by contributing to the evolution and function of long non-coding RNAs (lncRNAs). XACT is a primate-specific TE-derived lncRNA that coats active X chromosomes in pluripotent cells and may contribute to species-specific regulation of X-chromosome inactivation. Here we explore how different families of TEs have contributed to shaping the XACT locus and coupling its expression to pluripotency. Through a combination of sequence analysis across primates, transcriptional interference, and genome editing, we identify a critical enhancer for the regulation of the XACT locus that evolved from an ancestral group of mammalian endogenous retroviruses (ERVs), prior to the emergence of XACT. This ERV was hijacked by younger hominoid-specific ERVs that gave rise to the promoter of XACT, thus wiring its expression to the pluripotency network. This work illustrates how retroviral-derived sequences may intervene in species-specific regulatory pathways.


2007 ◽  
Vol 10 (02) ◽  
pp. 155-172 ◽  
Author(s):  
ANDRÉ LEIER ◽  
P. DWIGHT KUO ◽  
WOLFGANG BANZHAF

Previous studies on network topology of artificial gene regulatory networks created by whole genome duplication and divergence processes show subgraph distributions similar to gene regulatory networks found in nature. In particular, certain network motifs are prominent in both types of networks. In this contribution, we analyze how duplication and divergence processes influence network topology and preferential generation of network motifs. We show that in the artificial model such preference originates from a stronger preservation of protein than regulatory sites by duplication and divergence. If these results can be transferred to regulatory networks in nature, we can infer that after duplication the paralogous transcription factor binding site is less likely to be preserved than the corresponding paralogous protein.


2011 ◽  
Vol 5 (Suppl 3) ◽  
pp. S3 ◽  
Author(s):  
Xi Wu ◽  
Peng Li ◽  
Nan Wang ◽  
Ping Gong ◽  
Edward J Perkins ◽  
...  

2021 ◽  
Vol 179 (2) ◽  
pp. 205-225
Author(s):  
Roberto Barbuti ◽  
Pasquale Bove ◽  
Roberta Gori ◽  
Damas Gruska ◽  
Francesca Levi ◽  
...  

Gene regulatory networks represent the interactions among genes regulating the activation of specific cell functionalities and they have been successfully modeled using threshold Boolean networks. In this paper we propose a systematic translation of threshold Boolean networks into reaction systems. Our translation produces a non redundant set of rules with a minimal number of objects. This translation allows us to simulate the behavior of a Boolean network simply by executing the (closed) reaction system we obtain. This can be very useful for investigating the role of different genes simply by “playing” with the rules. We developed a tool able to systematically translate a threshold Boolean network into a reaction system. We use our tool to translate two well known Boolean networks modelling biological systems: the yeast-cell cycle and the SOS response in Escherichia coli. The resulting reaction systems can be used for investigating dynamic causalities among genes.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Elijah Paul ◽  
Gleb Pogudin ◽  
William Qin ◽  
Reinhard Laubenbacher

Boolean networks are a popular modeling framework in computational biology to capture the dynamics of molecular networks, such as gene regulatory networks. It has been observed that many published models of such networks are defined by regulatory rules driving the dynamics that have certain so-called canalizing properties. In this paper, we investigate the dynamics of a random Boolean network with such properties using analytical methods and simulations. From our simulations, we observe that Boolean networks with higher canalizing depth have generally fewer attractors, the attractors are smaller, and the basins are larger, with implications for the stability and robustness of the models. These properties are relevant to many biological applications. Moreover, our results show that, from the standpoint of the attractor structure, high canalizing depth, compared to relatively small positive canalizing depth, has a very modest impact on dynamics. Motivated by these observations, we conduct mathematical study of the attractor structure of a random Boolean network of canalizing depth one (i.e., the smallest positive depth). For every positive integer ℓ, we give an explicit formula for the limit of the expected number of attractors of length ℓ in an n-state random Boolean network as n goes to infinity.


Sign in / Sign up

Export Citation Format

Share Document