artificial gene
Recently Published Documents


TOTAL DOCUMENTS

88
(FIVE YEARS 5)

H-INDEX

15
(FIVE YEARS 0)

2021 ◽  
pp. 83-94
Author(s):  
Alexander Turner ◽  
Katharina C. Wollenberg Valero


2021 ◽  
Author(s):  
André Luiz de Lucena Moreira ◽  
César Rennó-Costa

Evolution optimizes cellular behavior throughout sequential generations by selecting the successful individual cells in a given context. As gene regulatory networks (GRNs) determine the behavior of single cells by ruling the activation of different processes - such as cell differentiation and death - how GRNs change from one generation to the other might have a relevant impact on the course of evolution. It is not clear, however, which mechanisms that affect GRNs effectively favor evolution and how. Here, we use a population of computational robotic models controlled by artificial gene regulatory networks (AGRNs) to evaluate the impact of different genetic modification strategies in the course of evolution. The virtual agent senses the ambient and acts on it as a bacteria in different phototaxis-like tasks - orientation to light, phototaxis, and phototaxis with obstacles. We studied how the strategies of gradual and abrupt changes on the AGRNs impact evolution considering multiple levels of task complexity. The results indicated that a gradual increase in the complexity of the performed tasks is beneficial for the evolution of the model. Furthermore, we have seen that larger gene regulatory networks are needed for more complex tasks, with single-gene duplication being an excellent evolutionary strategy for growing these networks, as opposed to full-genome duplication. Studying how GRNs evolved in a biological environment allows us to improve the computational models produced and provide insights into aspects and events that influenced the development of life on earth.





ChemBioChem ◽  
2021 ◽  
Author(s):  
Nicoló Zuin Fantoni ◽  
Tom Brown ◽  
Andrew Kellett
Keyword(s):  


2021 ◽  
Vol 11 ◽  
Author(s):  
Grant A. R. Gale ◽  
Baojun Wang ◽  
Alistair J. McCormick

Cyanobacteria utilize sunlight to convert carbon dioxide into a wide variety of secondary metabolites and show great potential for green biotechnology applications. Although cyanobacterial synthetic biology is less mature than for other heterotrophic model organisms, there are now a range of molecular tools available to modulate and control gene expression. One area of gene regulation that still lags behind other model organisms is the modulation of gene transcription, particularly transcription termination. A vast number of intrinsic transcription terminators are now available in heterotrophs, but only a small number have been investigated in cyanobacteria. As artificial gene expression systems become larger and more complex, with short stretches of DNA harboring strong promoters and multiple gene expression cassettes, the need to stop transcription efficiently and insulate downstream regions from unwanted interference is becoming more important. In this study, we adapted a dual reporter tool for use with the CyanoGate MoClo Assembly system that can quantify and compare the efficiency of terminator sequences within and between different species. We characterized 34 intrinsic terminators in Escherichia coli, Synechocystis sp. PCC 6803, and Synechococcus elongatus UTEX 2973 and observed significant differences in termination efficiencies. However, we also identified five terminators with termination efficiencies of >96% in all three species, indicating that some terminators can behave consistently in both heterotrophic species and cyanobacteria.



2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Yuchen Liu ◽  
Weiren Huang ◽  
Zhiming Cai

Abstract The logical AND gate gene circuit based on the CRISPR-Cas9 system can distinguish bladder cancer cells from normal bladder epithelial cells. However, the layered artificial gene circuits have the problems of high complexity, difficulty in accurately predicting the behavior, and excessive redundancy, which cannot be applied to clinical translation. Here, we construct minigene circuits based on the CRISPReader, a technology used to control promoter-less gene expression in a robust manner. The minigene circuits significantly induce robust gene expression output in bladder cancer cells, but have nearly undetectable gene expression in normal bladder epithelial cells. The minigene circuits show a higher capability for cancer identification and intervention when compared with traditional gene circuits, and could be used for in vivo cancer gene therapy using the all-in-one AAV vector. This approach expands the design ideas and concepts of gene circuits in medical synthetic biology.



BioTechniques ◽  
2020 ◽  
Vol 69 (3) ◽  
pp. 211-219
Author(s):  
Kotetsu Kayama ◽  
Hibiki Hashizume ◽  
Gerry Amor Camer ◽  
Daiji Endoh

Artificial gene synthesis based on oligonucleotide augmentation is known as overlap extension PCR which generates a variety of intermediate synthetic products. The orientation and concentration of oligomers can be adjusted to reduce the synthesis of intermediates and optimize the full-length process of DNA synthesis, using a simulation program for serial oligomer extension. The efficiency of the serial oligomer extension process is predicted to be greatest when oligomers are in a ‘forward-reverse-reverse-reverse’ direction. Oligomers with such designed directions demonstrated generation of the desired product in the shortest time (number of cycles) by repeated annealing and elongation. This method, named Asymmetric Extension supported by a Simulator for Oligonucleotide Extension (AESOE), has shown efficiency and effectiveness with potentials for future improvements and optimal usage in DNA synthesis.





Foods ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 222
Author(s):  
Shiyao Yu ◽  
Dengxiang Du ◽  
Alex C. Wu ◽  
Yeming Bai ◽  
Peng Wu ◽  
...  

This paper examines if, in maize, starch structure and starch-dependent properties might be altered by pleiotropic effects arising from genetic modifications that are not directly related to starch synthesis. The molecular structure, specifically the starch chain-length distributions (CLDs), of two maize lines transformed with Bar (bialaphos resistance) and Cry1c genes (an artificial gene, encoding proteinaceous insecticidal δ-endotoxins) were compared to those of their control lines. The two transgenes are responsible for herbicidal resistance and insect tolerance, respectively. The starch CLDs were measured by enzymatic debranching and measuring the molecular weight distributions of the resulting linear chains. It was found that although all the lines had similar amylose contents, the CLDs of both amylopectin and amylose for Cry1c were noticeably different from the others, having more short amylopectin and long amylose chains. These CLDs are known to affect functional properties, and indeed it was found that the Cry1c transgenic lines showed a lower gelatinization temperature and faster digestion rate than the control or Bar lines. However, a slower digestion rate is nutritionally desirable. Thus, pleiotropic effects from genetic modifications can indirectly but significantly affect the starch synthesis pathway and thus change functional properties of significance for human health.



Sign in / Sign up

Export Citation Format

Share Document