scholarly journals Task-dependent recruitment across ankle extensor muscles and between mechanical demands is driven by the metabolic cost of muscle contraction

2021 ◽  
Vol 18 (174) ◽  
pp. 20200765
Author(s):  
Adrian K. M. Lai ◽  
Taylor J. M. Dick ◽  
Andrew A. Biewener ◽  
James M. Wakeling

The nervous system is faced with numerous strategies for recruiting a large number of motor units within and among muscle synergists to produce and control body movement. This is challenging, considering multiple combinations of motor unit recruitment may result in the same movement. Yet vertebrates are capable of performing a wide range of movement tasks with different mechanical demands. In this study, we used an experimental human cycling paradigm and musculoskeletal simulations to test the theory that a strategy of prioritizing the minimization of the metabolic cost of muscle contraction, which improves mechanical efficiency, governs the recruitment of motor units within a muscle and the coordination among synergist muscles within the limb. Our results support our hypothesis, for which measured muscle activity and model-predicted muscle forces in soleus—the slower but stronger ankle plantarflexor—is favoured over the weaker but faster medial gastrocnemius (MG) to produce plantarflexor force to meet increased load demands. However, for faster-contracting speeds induced by faster-pedalling cadence, the faster MG is favoured. Similar recruitment patterns were observed for the slow and fast fibres within each muscle. By contrast, a commonly used modelling strategy that minimizes muscle excitations failed to predict force sharing and known physiological recruitment strategies, such as orderly motor unit recruitment. Our findings illustrate that this common strategy for recruiting motor units within muscles and coordination between muscles can explain the control of the plantarflexor muscles across a range of mechanical demands.

2002 ◽  
Vol 205 (3) ◽  
pp. 359-369 ◽  
Author(s):  
James M. Wakeling ◽  
Motoshi Kaya ◽  
Genevieve K. Temple ◽  
Ian A. Johnston ◽  
Walter Herzog

SUMMARY Motor units are the functional units of muscle contraction in vertebrates. Each motor unit comprises muscle fibres of a particular fibre type and can be considered as fast or slow depending on its fibre-type composition. Motor units are typically recruited in a set order, from slow to fast, in response to the force requirements from the muscle. The anatomical separation of fast and slow muscle in fish permits direct recordings from these two fibre types. The frequency spectra from different slow and fast myotomal muscles were measured in the rainbow trout Oncorhynchus mykiss. These two muscle fibre types generated distinct low and high myoelectric frequency bands. The cat paw-shake is an activity that recruits mainly fast muscle. This study showed that the myoelectric signal from the medial gastrocnemius of the cat was concentrated in a high frequency band during paw-shake behaviour. During slow walking, the slow motor units of the medial gastrocnemius are also recruited, and this appeared as increased muscle activity within a low frequency band. Therefore, high and low frequency bands could be distinguished in the myoelectric signals from the cat medial gastrocnemius and probably corresponded, respectively, to fast and slow motor unit recruitment. Myoelectric signals are resolved into time/frequency space using wavelets to demonstrate how patterns of motor unit recruitment can be determined for a range of locomotor activities.


1982 ◽  
Vol 47 (5) ◽  
pp. 797-809 ◽  
Author(s):  
P. J. Cordo ◽  
W. Z. Rymer

1. Subdivided portions of the cut ventral root innervation of the soleus muscle were electrically stimulated in 14 anesthetized cats. The stimulus trains imposed on these nerves simulated the recruitment and rate-modulation patterns of single motor units recorded during stretch-reflex responses in decerebrate preparations. Each activation pattern was evaluated for its ability to prevent muscle yield. 2. Three basic stimulus patterns, recruitment, step increases in stimulus rate, and doublets were imposed during the course of ramp stretches applied over a wide range of velocities. The effect of each stimulus pattern on muscle force was compared to the force output recorded without stretch-related recruitment or rate modulation. 3. Motor-unit recruitment was found to be most effective in preventing yield during muscle stretch. Newly recruited motor units showed no evidence of yielding for some 250 ms following activation, at which time muscle stiffness declined slightly. This time-dependent resistance to yield was observed regardless of whether the onset of the neural stimulus closely preceded or followed stretch onset. 4. Step increases in stimulus rate arising shortly after stretch onset did not prevent the occurrence of yield at most stretch velocities, but did augment muscle stiffness later in the stretch. Doublets in the stimulus train were found to augment muscle stiffness only when they occurred in newly recruited motor units. 5. These results suggest that at low or moderate initial forces, the prevention of yield in lengthening, reflexively intact muscle results primarily from rapid motor-unit recruitment. To a lesser extent, the spring-like character of the stretch-reflex response also derives from step increases in firing rate of motor units active before stretch onset and doublets in units recruited during the course of stretch. Smooth rate increases appear to augment muscle force later in the course of the reflex response.


1986 ◽  
Vol 55 (5) ◽  
pp. 931-946 ◽  
Author(s):  
R. C. Foehring ◽  
G. W. Sypert ◽  
J. B. Munson

This work tested whether the membrane electrical properties of cat motoneurons, the contractile properties of their muscle units, and the normal relationships among them would be restored 9 mo after section and resuture of their muscle nerve. Properties of medial gastrocnemius (MG) motor units were examined 9 mo following section and resuture of the MG nerve in adult cats. Motoneuron electrical properties and muscle-unit contractile properties were measured. Motor units were classified on the basis of their contractile properties as type fast twitch, fast fatiguing (FF), fast twitch with intermediate fatigue resistance (FI), fast twitch, fatigue resistant (FR), or slow twitch, fatigue resistant (S) (8, 20). Muscle fibers were classified as type fast glycolytic (FG), fast oxidative glycolytic (FOG), or slow oxidative (SO) on the basis of histochemical staining for myosin adenosine triphosphatase, nicotinamide adenine dinucleotide diaphorase, and alpha-glycerophosphate dehydrogenase (48). Following 9 mo self-reinnervation, the proportions of each motor-unit type were the same as in normal control animals. Motoneuron membrane electrical properties [axonal conduction velocity, afterhyperpolarization (AHP) half-decay time, rheobase, and input resistance] also returned to control levels in those motoneurons that made functional reconnection with the muscle (as determined by ability to elicit measurable tension). The relationships among motoneuron electrical properties were normal in motoneurons making functional reconnection. Approximately 10% of MG motoneurons sampled did not elicit muscle contraction. These cells' membrane electrical properties were different from those that did elicit muscle contraction. Contractile speed and fatigue resistance of reinnervated muscle units had recovered to control levels at 9 mo postoperation. Force generation did not recover fully in type-FF units. The reduced tensions were apparently due to failure of recovery of FG muscle fiber area. Following reinnervation, relationships between motoneuron electrical and muscle-unit contractile properties were similar to controls. This was reflected in a degree of correspondence between motor-unit type and motoneuron type similar to normal units (84 vs. 86%, as defined by Ref. 61). There was a significantly increased proportion of type-SO muscle fibers and a decrease in the fast muscle fibers (especially type FOG) in 9 mo reinnervated MG. Together with the unchanged proportions of motor-unit types, this led to an estimate of average innervation ratios being increased in type-S motor units and decreased in type-FR units.(ABSTRACT TRUNCATED AT 400 WORDS)


1996 ◽  
Vol 75 (1) ◽  
pp. 26-37 ◽  
Author(s):  
K. E. Tansey ◽  
B. R. Botterman

1. The recruitment order of 64 pairs of motor units, comprising 21 type-identified units, was studied during centrally evoked muscle contractions of the cat medial gastrocnemius (MG) muscle in an unanesthetized, high decerebrate preparation. Motor units were functionally isolated within the MG nerve by intra-axonal (or intramyelin) penetration with conventional glass microelectrodes. 2. Graded stimulation of the mesencephalic locomotor region (MLR) was used to evoke smoothly graded contractions, which under favorable conditions was estimated to reach 40% of maximum tetanic tension of the MG muscle. With this method of activation, 100% of slow twitch (type S) units, 95% of fast twitch, fatigue-resistant (type FR) units, 86% of fast twitch, fatigue-intermediate (type FI) units, and 49% of fast twitch, fatigable (type FF) units studied were recruited. 3. Motoneuron size as estimated by axonal conduction velocity (CV) was correlated with muscle-unit size as estimated by maximum tetanic tension (Po). Although the correlation between these properties was significant among type S and FR units, no significant correlation was found for these properties among type FI and FF units. 4. Motor-unit recruitment was ordered by physiological type (S > F, 100% of pairs; S > FR > FI > FF, 93% of pairs). Although none of the motor-unit properties studied predicted recruitment order perfectly, motor-unit recruitment was found to proceed by increasing Po (89% of pairs), decreasing contraction time (79% of pairs), decreasing fatigue index (80% of pairs), and increasing CV (76% of pairs). These percentages were significantly different from random (i.e., 50%). Statistically, all four motor-unit properties were equivalent in predicting recruitment order. These results are similar to those reported by other investigators for motor-unit recruitment order evoked from other supraspinal centers, as well as from peripheral sites. 5. When, however, motor-unit recruitment within pairs of motor units containing two fast-twitch (type F) units was examined, Po was a significantly better predictor of recruitment order than CV (85% vs. 52% of pairs). One explanation for this observation is that the correlation between Po and CV is high among type S, type FR units, and possibly among the lower-tension type FF units, but not among the remaining higher-tension type FF units. 6. The reproducibility of recruitment order in multiple contractions was investigated in 16 motor-unit pairs. Recruitment order was found to be variable in only three motor-unit pairs, all of which contained units of similar physiological type and recruitment threshold. 7. Analysis of recruitment order by pair-wise testing confirms the general conclusion reached in human studies that the muscle force level at recruitment for a motor unit is highly correlated with its strength. As an additional confirmation, the whole-muscle force level at recruitment for 41 units was measured in a series of contractions in which the rate of rise of muscle tension was limited to rates < 1,000 g/s. For these contractions, a significant correlation was found between muscle tension at recruitment and motor-unit Po.


2017 ◽  
Vol 123 (4) ◽  
pp. 835-843 ◽  
Author(s):  
Alessandro Del Vecchio ◽  
Francesco Negro ◽  
Francesco Felici ◽  
Dario Farina

The surface interference EMG signal provides some information on the neural drive to muscles. However, the association between neural drive to muscle and muscle activation has long been debated with controversial indications due to the unavailability of motor unit population data. In this study, we clarify the potential and limitations of interference EMG analysis to infer motor unit recruitment strategies with an experimental investigation of several concurrently active motor units and of the associated features of the surface EMG. For this purpose, we recorded high-density surface EMG signals during linearly increasing force contractions of the tibialis anterior muscle, up to 70% of maximal force. The recruitment threshold (RT), conduction velocity (MUCV), median frequency (MDFMU), and amplitude (RMSMU) of action potentials of 587 motor units from 13 individuals were assessed and associated with features of the interference EMG. MUCV was positively associated with RT ( R2 = 0.64 ± 0.14), whereas MDFMU and RMSMU showed a weaker relation with RT ( R2 = 0.11 ± 0.11 and 0.39 ± 0.24, respectively). Moreover, the changes in average conduction velocity estimated from the interference EMG predicted well the changes in MUCV ( R2 = 0.71), with a strong association to ankle dorsiflexion force ( R2 = 0.81 ± 0.12). Conversely, both the average EMG MDF and RMS were poorly associated with motor unit recruitment. These results clarify the limitations of EMG spectral and amplitude analysis in inferring the neural strategies of muscle control and indicate that, conversely, the average conduction velocity could provide relevant information on these strategies. NEW & NOTEWORTHY The surface EMG provides information on the neural drive to muscles. However, the associations between EMG features and neural drive have been long debated due to unavailability of motor unit population data. Here, by using novel highly accurate decomposition of the EMG, we related motor unit population behavior to a wide range of voluntary forces. The results fully clarify the potential and limitation of the surface EMG to provide estimates of the neural drive to muscles.


2005 ◽  
Vol 55 (1) ◽  
pp. 41-58 ◽  
Author(s):  
James Wakeling ◽  
Antra Rozitis

AbstractVertebrate skeletal muscles act across joints and produce segmental accelerations and therefore animal movement when they contract. Different muscles and different motor units vary in their mechanical contractile properties. Early studies on motor unit recruitment demonstrated orderly recruitment of motor units from the slowest to the fastest during a graded contraction. However, many subsequent studies illustrate conditions when alternative recruitment strategies may exist. Motor unit recruitment during locomotion is thus multifactorial and more complex than typically thought.Different types of motor unit vary in their mechanical properties, including rates of force activation and deactivation, maximum unloaded shortening velocities and the shortening velocities at which maximum mechanical power output and maximum mechanical efficiency occur. In short, it would make mechanical sense to perform fast activities with the faster motor units and slow activities with the slower motor units. However, determining patterns of motor unit recruitment during locomotion has presented experimental challenges.Comparisons between distinct muscles have shown that fast fish swimming and the cat paw shake are activities which employ predominantly the fast and not the slower muscle. Glycogen depletion studies have showed that jumping in the bushbaby uses fast without slow motor units within the vastus lateralis and gastrocnemius muscles. Studies in man show that differential recruitment of the different types of muscle fibre occurs at different times within each running stride. It is suggested that vertebrates may have a strategy of recruiting the motor units that are most mechanically suited for the different locomotor demands. However, we have much to learn about motor recruitment patterns during locomotion.


2014 ◽  
Vol 112 (7) ◽  
pp. 1685-1691 ◽  
Author(s):  
Christopher J. Dakin ◽  
Brian H. Dalton ◽  
Billy L. Luu ◽  
Jean-Sébastien Blouin

Rectification of surface electromyographic (EMG) recordings prior to their correlation with other signals is a widely used form of preprocessing. Recently this practice has come into question, elevating the subject of EMG rectification to a topic of much debate. Proponents for rectifying suggest it accentuates the EMG spike timing information, whereas opponents indicate it is unnecessary and its nonlinear distortion of data is potentially destructive. Here we examine the necessity of rectification on the extraction of muscle responses, but for the first time using a known oscillatory input to the muscle in the form of electrical vestibular stimulation. Participants were exposed to sinusoidal vestibular stimuli while surface and intramuscular EMG were recorded from the left medial gastrocnemius. We compared the unrectified and rectified surface EMG to single motor units to determine which method best identified stimulus-EMG coherence and phase at the single-motor unit level. Surface EMG modulation at the stimulus frequency was obvious in the unrectified surface EMG. However, this modulation was not identified by the fast Fourier transform, and therefore stimulus coherence with the unrectified EMG signal failed to capture this covariance. Both the rectified surface EMG and single motor units displayed significant coherence over the entire stimulus bandwidth (1–20 Hz). Furthermore, the stimulus-phase relationship for the rectified EMG and motor units shared a moderate correlation ( r = 0.56). These data indicate that rectification of surface EMG is a necessary step to extract EMG envelope modulation due to motor unit entrainment to a known stimulus.


1987 ◽  
Vol 57 (4) ◽  
pp. 1227-1245 ◽  
Author(s):  
R. C. Foehring ◽  
G. W. Sypert ◽  
J. B. Munson

We tested whether the muscle innervated may influence the expression of motoneuron electrical properties. Properties of individual motor units were examined following cross-reinnervation (X-reinnervation) of cat lateral gastrocnemius (LG) and soleus muscles by the medial gastrocnemius (MG) nerve. We examined animals at two postoperative times: 9-10 wk (medX) and 9-11 mo (longX). For comparison, normal LG and soleus motoneuron properties were also studied. Motor units were classified on the basis of their contractile responses as fast contracting fatigable, fast intermediate fast contracting fatigue resistant, and slow types FF, FI, FR, or S, respectively) (9, 21). Motoneuron electrical properties (rheobase, input resistance, axonal conduction velocity, afterhyperpolarization) were measured. After 9-11 mo, MG motoneurons that innervated LG muscle showed recovery of electrical properties similar to self-regenerated MG motoneurons. The relationships between motoneuron electrical properties were largely similar to self-regenerated MG. For MG motoneurons that innervated LG, motoneuron type (65) predicted motor-unit type in 74% of cases. LongX-soleus motoneurons differed from longX-LG motoneurons or self-regenerated MG motoneurons in mean values for motoneuron electrical properties. The differences in overall means reflected the predominance of type S motor units. The relationships between motoneuron electrical properties were also different than in self-regenerated MG motoneurons. In all cases, the alterations were in the direction of properties of type S units, and the relationship between normal soleus motoneurons and their muscle units. Within motor-unit types, the mean values were typical for that type in self-regenerated MG. Motoneuron type (65) was a fairly strong predictor of motor-unit type in longX soleus. MG motoneurons that innervated soleus displayed altered values for axonal conduction velocity, rheobase, and input resistance, which could indicate incomplete recovery from the axotomized state. However, although mean afterhyperpolarization (AHP) half-decay time was unaltered by axotomy (25), this parameter was significantly lengthened in MG motoneurons that innervated soleus muscle. There were, however, individual motoneuron-muscle-unit mismatches, which suggested that longer mean AHP half-decay time may also be due to incomplete recovery of a subpopulation of motoneurons. Those MG motoneurons able to specify soleus muscle-fiber type exhibited motoneuron electrical properties typical of that same motoneuron type in self-regenerated MG.(ABSTRACT TRUNCATED AT 400 WORDS)


1994 ◽  
Vol 76 (6) ◽  
pp. 2663-2671 ◽  
Author(s):  
L. J. Einsiedel ◽  
A. R. Luff

The aim of the study was to determine whether increased motoneuron activity induced by treadmill walking would alter the extent of motoneuron sprouting in the partially denervated rat medial gastrocnemius muscle. An extensive partial denervation was effected by unilateral section of the L5 ventral root, and it is very likely that all units remaining in the medial gastrocnemius were used in treadmill walking. Rats were trained for 1.5 h/day and after 14 days were walking at least 1 km/day. Motor unit characteristics were determined 24 days after the partial denervation and were compared with units from partially denervated control (PDC) animals and with units from normal (control) animals. In PDC rats, force developed by slow, fast fatigue-resistant, and fast intermediate-fatigable motor units increased substantially compared with control animals; that of fast-fatigable units did not increase. In partially denervated exercised animals, force developed by slow and fast-fatigue-resistant units showed no further increase, but fast-intermediate- and fast-fatigable units showed significant increases compared with those in PDC animals. The changes in force were closely paralleled by changes in innervation ratios. We concluded that neuronal activity is an important factor in determining the rate of motoneuron sprouting.


1991 ◽  
Vol 65 (4) ◽  
pp. 952-967 ◽  
Author(s):  
C. J. Heckman ◽  
M. D. Binder

1. A pool of 100 simulated motor units was constructed in which the steady-state neural and mechanical properties of the units were very closely matched to the available experimental data for the cat medial gastrocnemius motoneuron pool and muscle. The resulting neural network generated quantitative predictions of whole system input-output functions based on the single unit data. The results of the simulations were compared with experimental data on normal motor system behavior in humans and animals. 2. We considered only steady-state, isometric conditions. All motoneurons received equal proportions of the synaptic input, and no feedback loops were operative. Thus the intrinsic properties of the motor unit population alone determined the form of the system input-output function. Expressing the synaptic input in terms of effective synaptic current allowed the simulated motoneuron input-output functions to be specified by well-known firing rate-injected current relations. The motor unit forces were determined from standard motor unit force-frequency relations, and the system output at any input level was assumed to be the linear sum of the forces of the active motor units. 3. The steady-state input-output function of the simulated motoneuron pool had a roughly sigmoidal shape that was quite different from those derived from previous recruitment models, which did not incorporate frequency modulation. Frequency modulation in combination with the skewed distribution of thresholds (low values much more frequent than high) restricted upward curvature to low input levels, whereas frequency modulation alone was responsible for the final gradual approach to the maximum force output. 4. Sensitivity analyses were performed to assess the importance of several assumptions that were required to deal with gaps and uncertainties in the available experimental data. The shape of the input-output function was not critically dependent on any of these assumptions, including those specifying linear summation of inputs and outputs. 5. A key assumption of the model was that systematic variance in motor unit properties was much more important than random variance for determining the input-output function. Addition of random variance via Monte Carlo techniques showed that this assumption was correct. These results suggest that the output of a motoneuron pool should be quite tolerant of random variance in the distribution of synaptic inputs and yet substantially altered by any systematic differences, such as unequal distribution of inputs among different motor unit types.(ABSTRACT TRUNCATED AT 400 WORDS)


Sign in / Sign up

Export Citation Format

Share Document